Right-Handed Girls With Rt-Ais Measured Using Holtain Equipment Have Upper Arm Length Asymmetry (Right-Minus-Left) Which Is: 1) Relatively Longer On Scoliosis Curve Convexity; 2) Significantly Associated With Scoliosis Curve Severity (Cobb Angle And Apical Vertebral Rotation); And 3) Transient, Decreasing With Age And Years After Menarche [1,2]. The Aim Is To Test Whether The Right Upper Arm Length Relative Overgrowth And Spinal Deformity Severity Were Associated With Right Or Left Upper Arm Length Size-For-Age. 94 Right-Handed Girls With Rt-Ais, Age 11–18 Years, (Mean Cobb Angle 46 Degrees, Range 10–102 Degrees), Were Evaluated Using A Harpenden Anthropometer For Upper Arm Length Asymmetry, Plotted Against Right And Left Upper Arm Length Standard Deviation Scores (Sds), Calculated From 378 Normal Girls, Age 11–18 Years.Aim:
Method:
There is mounting evidence to suggest a vascular insult is responsible for Perthes' disease, and it is suggested that this may have long-term implications for the vascular health of affected individuals. This study sought to use ultrasound measures to investigate vascular structure and function in children affected by Perthes' disease. This case control study encompassed 149 cases and 146 controls, frequency matched for age and sex. Endothelial function was measured using the technique of flow-mediated dilatation of the brachial artery, and alterations in arterial flow were recorded in response to an ischaemic stimulus.Objective
Material and Methods
The relationship between the index (2D) to ring finger (4D) is one of the most commonly studied anthropometric measures, which is believed to offer insight into early growth and the foetal environment. This study aimed to determine the relationship between the 2D:4D ratio and the risk of Perthes' disease in children. The 2D:4D ratio was measured in 144 cases of Perthes' disease, and 144 controls. Cases and controls were frequency matched for age and sex. Measurements were recorded using a digital venier calliper on the palmar surface of the hand. Logistic regression was undertaken adjusting for age, with stratification for sex.Objective
Methods
In patients with adolescent idiopathic scoliosis (AIS), anomalous extra-spinal left-right skeletal length asymmetries in upper limbs, periapical ribs, and ilia beg the question as to whether these bilateral asymmetries are connected in some way with pathogenesis. The upper arm and iliac length asymmetries correlate significantly with adjacent spinal curve severity respectively in thoracic and lower (thoracolumbar and lumbar) spine. In lower limbs, skeletal length asymmetries and proximo-distal disproportion are unrelated to spinal curve severity. Overall, these observations raise questions about mechanisms that determine skeletal bilateral symmetry of vertebrates in health and disorder, and whether such mechanisms are involved in the cause of this disease. We investigated upper arm length (UAL) asymmetries in two groups of right-handed girls aged 11–18 years, with right thoracic adolescent idiopathic scoliosis (RT-AIS, n=98) from preoperative and screening referrals (mean Cobb angle 45°) and healthy controls (n=240). Right and left UAL were measured with a Harpenden anthropometer of the Holtain equipment, by one of four observers (RGB, AAC, RKP, FJP). UAL asymmetry was calculated as UAL difference, right minus left, in mm. Repeatability of the measurements was assessed by technical error of the measurement (TEM) and coefficient of reliability (R).Introduction
Methods
The possibility that AIS aetiology involves undetected neuromuscular dysfunction is considered likely by several workers [1,2]. Yet in the extensive neuroscience research of idiopathic scoliosis certain neurodevelopmental concepts have been neglected. These include [3]:
a CNS body schema (“body in the brain”) for posture and movement control generated during development and growth by establishing a long-lasting memory, and pruning of cortical synapses at puberty. During normal development the CNS has to adapt to the rapidly growing skeleton of adolescence, and in AIS to developing spinal asymmetry from whatever cause. Examination of publications relating to the CNS body schema, parietal lobe and temporo-parietal junction [4,5] led us to a new concept: namely, that a delay in maturation of the CNS body schema during adolescence with an early AIS deformity at a time of rapid spinal growth results in the CNS attempting to balance the deformity in a trunk that is larger than the information on personal space (self) already established in the brain by that time of development. It is postulated that this CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The maturational delay may be primary in the brain or secondary to impaired sensory input from end-organs [6], nerve fibre tracts [2,7,8] or central processing [9,10]. The motor component of the concept could be evaluated using transcranial magnetic stimulation [11].
While previous studies have highlighted possible aetiological factors for adolescent idiopathic scoliosis (AIS), research employing gait measurements have demonstrated asymmetries in the ground reaction forces, suggesting a relationship between these asymmetries, neurological dysfunction and spinal deformity. Furthermore, investigations have indicated that the kinematic differences in various body segments may be a major contributing factor. This investigation, which formed part of a wider comprehensive study, was aimed at identifying asymmetries in lower limb kinematics and pelvic and back movements during level walking in scoliotic subjects that could be related to the spinal deformity. Additionally, the study examined the time domain parameters of the various components of ground reaction force together with the centre of pressure (CoP) pattern, assessed during level walking, which could be related to the spinal deformity. Although previous studies indicate that force platforms provide good estimation of the static balance of individuals, there remains a paucity of information on dynamic balance during walking. In addition, while research has documented the use of CoP and net joint moments in gait assessment and have assessed centre of mass (CoM)–CoP distance relationships in clinical conditions, there is little information relating to the moments about CoM. Hence, one of the objectives of the present study was to assess and establish the asymmetry in the CoP pattern and moments about CoM during level walking and its relationship to spinal deformity. The investigation employed a six camera movement analysis system and a strain gauge force platform in order to estimate time domain kinetic parameters and other kinematic parameters in the lower extremities, pelvis and back. 16 patients with varying degrees of deformity, scheduled for surgery within a week took part in the study. The data for the right and left foot was collected from separate trials of normal walking. CoP was then estimated using the force and moment components from the force platform. Results indicate differences across the subjects depending on the laterality of the major curve. There is an evidence of a relationship between the medio-lateral direction CoP and the laterality of both the main and compensation curves. This is not evident in the anterior-posterior direction. Similar results were recorded for moments about CoM. Subjects with a higher left compensation curve had greater deviation to the left. Furthermore, the results show that the variables identified in this study can be applied to initial screening and surgical evaluation of spinal deformities such as scoliosis. Further studies are being undertaken to validate these findings.
In subjects with lumbar, thoracolumbar or pelvic tilt scoliosis no pattern of structural leg length inequality has been reported [1]. Forty-seven girls of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis – lumbar (LS) 17, or thoracolumbar (TLS) 30 (mean Cobb angle 16 degrees, range 4–38 degrees, mean age 14.8 years, left curves 25). The controls were 280 normal girls (11–18 years, mean age 13.4 years). Anthropometric measurements were made of total leg lengths (LL), tibiae (TL) and feet (FL) by one observer (RGB) and asymmetries calculated for LL, TL and FL, as absolutes and percentage asymmetries of right/left lengths. There are no detectable changes of absolute asymmetries with age for LL, TL or FL in scoliotic or normal girls. Asymmetries are found in scoliotic girls compared with normals with relative lengthening on the right for each of LL (0.95%) and TL (0.99%) (each p<
0.001), but not FL (0.38%).
Nachemson [2] suggested that there are more girls than boys with progressive AIS for the following reason. The maturation of postural mechanisms in the nervous system is complete about the same time in boys and girls. Girls enter their skeletal adolescent growth spurt with immature postural mechanisms. So, if they have a predisposition to develop a scoliosis curve, the spine deforms. In contrast, boys enter their adolescent growth spurt with mature postural mechanisms so they are protected from developing a scoliosis curve. We termed Nachemson’s concept the neuro-osseous timing of maturation (NOTOM) hypothesis and used it to propose a possible medical treatment for idiopathic scoliosis by delaying puberty through the pituitary using gonadorelin analogues as in idiopathic precocious puberty [3,4]. The prevalence of scoliosis is reported to be increased in rhythmic gymnasts (RGs) in Bulgaria [5] and in ballet dancers (BDs) in the USA [6]. Both groups exhibit delayed puberty, which, at first sight, nullifies the NOTOM hypothesis for idiopathic scoliosis. There are similarities between scoliotic RGs and BDs that include intensive exercise from a young age, dieting, delayed menarche, increased scoliosis prevalence (RGs 12%, BDs 24%), mild scoliosis curves (10–30 degrees), and presumably generalised joint laxity. Other differences in addition to country of origin and exercises, include certain anthropometric features and importantly in RGs, thoracolumbar and lumbar curves and, in BDs, right thoracic curves. While constitutional and environmental factors may determine the scoliosis, the different curve types in RGs and BDs suggest that the exercise pattern over many years determines which type of scoliosis develops, although not the curve severity.
The side distribution of single spinal curves in our school screening referrals for 1988–99 (n=218) suggests that the mechanism(s) determining curve laterality for the upper spine differs from those for the lower spine. We address here the laterality of right thoracic AIS. In the search to understand the aetiology of AIS some workers focus on mechanisms initiated in embryonic life including a disturbance of bilateral symmetry. The
Most workers consider that ribcage changes in AIS are secondary to spinal deformity. Others claim that ribs are pathogenic in curve initiation or aggravation. In 117 consecutive patients referred from school screening in 1996–99 and routinely scanned by ultrasound, 24 had thoracic and 33 thoracolumbar scolioses (right 37, left 20; mean age 14.9 years, range 12–18 years, girls 44 postmenarcheal 37, boys 13). On anteroposterior standing radiographs, Cobb angle (CA), apical vertebral rotation (AVR, Perdriolle) and apical vertebral translation (AVT from the T1-S1 line) were measured (mean &
range: CA 19°, 6–42°; AVR 15°, 0–39°; AVT 17 mm, 0–38 mm). Real-time ultrasound in the prone position recorded laminal rotation (LR) and rib rotation (RR) segmentally and the spine-rib rotation difference (SRRD) as LR
Several workers consider that the aetiology of adolescent idiopathic scoliosis (AIS) involves undetected neu-romuscular dysfunction. During normal development the central nervous system (CNS) has to adapt to the rapidly growing skeleton of adolescence, and in AIS also to developing spinal asymmetry from whatever cause. A new etiologic concept is proposed after examining the following evidence:
anomalous extra-spinal left-right skeletal length asymmetries of upper arms, ribs, ilia and lower limbs suggesting that asymmetries may also involve vertebral body and costal growth plates; growth velocity and curve progression in relation to scoliosis curve expression; the CNS body schema, parietal lobe and temporoparietal junction in relation to postural mechanisms; and human upright posture and movements of spine and trunk. The central of four requirements is maturational delay of the CNS body schema relative to skeletal maturation during the adolescent growth spurt that disturbs the normal neuro-osseous timing of maturation. With the development of an early AIS deformity at a time of rapid spinal growth the association of CNS maturational delay results in postural mechanisms failing to balance a lateral spinal deformity in an upright moving trunk that is larger than the information on personal space (self) established in the brain by that time of development. It is postulated that CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The concept brings together many findings relating AIS to the nervous and musculoskeletal systems and suggests brain morphometric studies in subjects with progressive AIS.
Nachemson [2] drawing upon the theses of Sahlstrand [3] and Lidström [4] articulated the view there are more girls than boys with progressive AIS for the following reason. The maturation of postural mechanisms in the nervous system is complete about the same time in boys and girls. Girls enter their skeletal adolescent growth spurt with immature postural mechanisms – so if they have a predisposition to develop a scoliosis curve, the spine deforms. In contrast, boys enter their adolescent growth spurt with mature postural mechanisms so they are protected from developing a scoliosis curve. We term Nachemson’s concept the neuro-osseous timing of maturation (NOTOM) hypothesis [1,5] The earlier sexual and skeletal maturation of girls may have an evolutionary basis through natural selection. Curve progression in AIS is associated with acceleration of the adolescent growth spurt [6]. Postural sway involves proprioceptive, vestibular and visual input to the central nervous system. In normal children there is a significant reduction in postural sway amplitude between six to nine years and 10–14 years [7,8]. In 1071 normal children aged 6–14 years postural sway is more stable in girls from 6–9 years and over 10 years there is no sex effect [9]; all these findings fit the Nachemson concept. But in view of a subsequent report on 64 normal children aged 3–17 years showing the change with age is limited to boys [10] the age and sex effect of postural sway in healthy children needs further evaluation. In AIS children stabilometry findings are conflicting and observed greater postural sway may be secondary to the curve. In the siblings of scoliotics Lidström et al [11] concluded that postural aberration is a factor in the aetiology of AIS.
In idiopathic scoliosis the detection of extra-spinal left-right skeletal length asymmetries in the upper limbs, ribs, ilia and lower limbs [1–7] begs the question: are these asymmetries unconnected with the pathogenesis, or are they an indicator of what may also be happening in immature vertebrae of the spine? The vertebrate body plan has mirror-image bilateral symmetries (mirror symmetrical, homologous morphologies) that are highly conserved culminating in the adult form [8]. The normal human body can be viewed as containing paired skeletal structures in the axial and appendicular skeleton as a) separate left and right paired forms (e.g. long limb bones, ribs, ilia), and b) united in paired forms (e.g. vertebrae, skull, mandible). Each of these separate and united pairs are mirror-image forms – enantiomorphs. In idiopathic scoliosis, genetic and epigenetic (environmental) mechanisms [9–11] may disturb the symmetry control of enantiomorphic immature bones [12–13] and, by creating left-right endochondral growth asymmetries, cause the extra-spinal bone length asymmetries, and within one or more vertebrae create growth conflict with distortion as deformities (= unsynchronised bone growth concept) [14].
Left-right skeletal length asymmetries in upper limbs related to curve side have been detected with adolescent thoracic idiopathic scoliosis (AIS). In school screening referrals with thoracic scoliosis we find apical vertebral rotation (AVR, Perdriolle) is associated significantly with upper arm length asymmetry. Sixty-nine of 218 consecutive adolescent patients referred routinely during 1988–1999 had