Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 294 - 294
1 Jul 2008
HERZBERG G SCHOIERER O BERTHONNAUD E DIMNET J
Full Access

Purpose of the study: The appropriate treatment for massive irreparable rotator cuff tears is a subject of debate. The purpose of this work was to analyze at mean five years follow-up a series of 16 shoulders treated with a latissimus dorsi flap.

Material and methods: These 16 patients (seven women) were aged 56 years on average. The procedure was a revision for four shoulders. The tears were all posterosuperior tears and caused invalidating pain in all patients. Mean anterior elevation was 93°. External rotation was 12°. The Constant score, assessed in eleven patients, was 27 points on average. The subacromial space measured 8 mm on average. Supraspinatus fatty degeneration was grade 2 in 45% and grade 3 in 55%. Infraspinatus degeneration was grade 3 in 80% and grade 4 in 20%. The latissimus dorsi flap was associated with a teres major flap in four shoulders and with a deltoid flap in seven. The semi-sitting position was used for 15 of the 16 patients.

Discussion: Treatment of massive irreparable rotator cuff tears is a controversial issue. When the subacromial space is preserved, the presence of muscle atrophy and tendon retraction despite forced mobilization it is logical to use several muscle transfers. This small series demonstrated that a significant improvement can be obtained. Nevertheless the postoperative period is long and indications must remain limited. We discuss our results in comparison with other reported series.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 34 - 34
1 Jan 2004
Besse J Maestro M Berthonnaud E Langlois F Meloni A Bouharoua M Dimnet J Lerat J Moyen B
Full Access

Purpose: Constitutional factors responsible for hallux falgus and hallux rigidus remain unclear. The purpose of this work was to compare the radiological feature of the forefoot in three populations with “normal” feet, hallux rigidis, and hallux valgus.

Material and methods: One standard protocol was used within the same unit to obtain dorsoplantar AP views of the foot in the standing position in all subjects. Fifty “normal” feet, with no apparent deformation, callosity, or pain, were selected among the orthopaedic unit personnel; mean age of the 25 subjects was 30.3±9.6 years, and 44% were women. The 30 patients with hallux rigidus were operated on at a mean age of 57.4±10.7 years, and 48.4% were women. The 50 patients with hallux valgus were operated on at a mean age of 50.8±12.8 year and 92% were women.

All radiograms were digitalised (Vidar VXR-12 plus) and analysed by four observers using the FootLog software which provides semiautomatic measurements. The following parameters were recorded: distance between the lateral sesamoid and the second metatarsal (LS-M2), the M1P1 angle (for the diaphyseal and mechanical axes of M1), the diaphyseal and mechanical distal metatarsal articular angle (DMAA) of M1, Meschan’s angle (M1–M2–M5), the distance between a line perpendicular to the axis of the foot drawn through the centre of the lateral sesamoid and the centre of the head of M4 (MS4–M4) (a corrective factor was introduced for the MS4–M4 distance to account for the displacement of the lateral sesamoid in hallux valgus), the M1 index = d1-D2 (length of the head of M1/MS4 – length of the head of M2/MS4), maestro 1 = d2–d3, maestro 2 = d3–d4, maestro 3 = d4–d5. The measured parameters were recorded automatically on an Excel data sheet and statistical analysis was performed with SPSS 9.0.

Results and discussion: Intra- and inter-observer reproducibility of measurements and morphological classifications were excellent. The LS/M2 distance was comparable in the three populations, proving that the lateral sesamoid is relatively fixed compared with the M2 and enabling its use as reference for the MS4 line. The Meschan angle did not discriminate between the three populations, likewise for the mean M1/M2 index, the M1P1, M1M2, and DMAA angles which were different in the three populations; there were 2° to 3° variations for the mechanical or shaft axis. The morphotype analysis demonstrated objective evidence of morphological differences of the forefoot in the three populations. The hallux rigidus group showed a predominance of the index plus and plus-minus with long M23 lateral patterns, while the hallux valgus group exhibited a predominance of M4M5 hypoplasia.

Discussion: Morphotypic definition of the metatarsals is an interesting approach providing a measurable way of interpreting forefoot disorders and guide surgical correction. These results should be confirmed with measures in larger series, which can be accomplished with FootLog software. It would also be useful to combine radiological studies with baropodometric studies.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 32
1 Mar 2002
Besse J Maestro M Berthonnaud E Dimnet J Lerat J Moyen B
Full Access

Purpose: Plantar pressure sores can lead to metatarsalgia depending on the patient’s activity level and age and on the status of the muscle-tendon system and the morphology of the forefoot. In 1995, Tanaka and Maestro attempted to quantify the relative lengths of the metatarsals. The purpose of this work was to check the results reported by Maestro and to try to define a morphotype classification of the metatarsals.

Material and methods: We analysed two series of normal feet: no apparent deformation, no callosity, no pain, no history of trauma or surgery. Fifty “normal” feet were selected among the personnel of the orthopaedics unit. Mean age of the 25 subjects was 30.3 ± 9.6 years, 44% were women. This series was compared with 34 “normal” feet reported by Maestro (age 55.2 ± 17.2 years, 62% women) used to define criteria for geometric progression (1995). A standing dorso-plantar radiograph was obtained with the same protocol for all patients. All radiographs were digitalized with a Vidar VXR-12 plus, then analysed by two observers with the semi-automatic FootLog measurements. The following measurements were recorded: SM4-M4 (distance between the line passing through the centre of the lateral sesmoid and perpendicular to the foot axis and the centre of the M4 head), M1 = d1 – d2 (length of the M1/SM4 head – length of the M2/SM4 head), Maestro criteria 1 = d2 – d3, Maestro 2 = d3 – d4, and Maestro 3 = d4 – d5.

Results: An SM4 line passing through the mid third of the M4 head (+2mm proximally / centre M4 head / −4 mm distally) as normal. The notion of row 2 geometric progression was conserved by tolerating 20% variation (Maestro 1 ± 1 mm, Maestro 2 ± 1mm, Maestro 3 ± 2 mm). Feet were classed in four metatarsal morphology types with subgroups: normal feet (line SM4 passing through the mid third of the M4 head – geometric progression) – long M23 (SM4 line centred on the mid third of M4 – but alteration of the geometric progression) with four subgroups (long M2, long M3, long M2-3, long M23 long 2) – M4M5 hypoplasia (distal SM4 line / at mid third of M4) with four subgroups (by geometric progression: long M2, long M23, long M23 long M2) – others (long M1: M1 > 3.3 mm causing distalization of SM4).

Discussion, conclusion: FootLog enables rapid radiographic measurements with excellent precision and intraobserver (variations from 0.1 to 0.2 mm and 0.1 to 0.5°) and interobserver (variations from 0.1 to 0.5 mm and 0.1 to 1°) reproducibility. In the two series of clinically “normal” feet, the measured parameters were strictly comparable. Radiologically, 31% were “normal”, and the others (30% long M23 – 37% M4M5 hypoplasia – 2% others) could be considered as predisposed to potential forefoot disorders. Finally only 48% of the subjects had the same morphotype for both feet. This study adds further precision to earlier qualitative evaluations of the forefoot architecture.