Trabecular TitaniumTM is a tri-dimensional material composed by multi-planar regular hexagonal cells and characterised by a highly open porosity that has been studied to optimise bone osteointegration. The aim of this study is to evaluate bone remodelling measuring BMD changes around an acetabular cup made from Trabecular TitaniumTM in primary total hip arthroplasty (THA). Between February 2009 and December 2010, 89 patients (91 hip) underwent primary THA with a modular acetabular cup in Trabecular TitaniumTM (DELTA-TT cup, Limacorporate, Villanova di San Daniele, Italy). The average age was 63.5± 9.4 years, the average height and weight were 75.9± 12.9 kg and 168.8± 8.9 cm, respectively (av. BMI 26.8± 4.2). There were 46 (51.7%) males and 43 (48.3%) females affected by primary coxarthrosis in 80 (87.9%) cases, avascular necrosis in 5 (5.5%), posttraumatic coxarthrosis in 3 (3.3%), dysplasia in 2 (2.2) and oligoarthritis in 1 (1.1%) case. The study includes the clinical evaluation with Harris Hip Score (HHS) and SF-36, radiographic evaluation and dual-energy x-ray absorptiometry (DEXA) analysis preoperatively and postoperatively at 1 week, 3, 6, 12 and 24 months. Preliminary results are currently available for 47 patients at 12 months, 68 at 6 months and 80 at 3 months. The average HHS significantly improved from 48.7± 14.99 preoperatively to 93.8± 5.91 at 12 months, with a constant progression in the intermediate follow-ups. All patients showed a significant ROM increase, with an average flexion from 86.6°± 15.9° preoperatively to 105°±13.14 at 12 months. Sf-36 highlighted a satisfactory improvement of general health status from an average preoperative value of 50.8± 18.7 to 80.7± 12.9 at 12 months (from 42.9 to 80.1 for physical health; from 58.4 to 81.3 for mental one). All cups were stable at 12 months with no radiolucent lines. Preliminary DXA analysis reported an initial bone mineral density decrease from 1 week baseline values (BMD R1: 1.40± 0.37; R2: 1.20± 0.45; R3:1.16± 0.31) to 3 months (BMD R1: 1.31± 0.41; R2: 1.17± 0.3; R3: 1.06± 0.37) followed by BMD recovery up to initial values (BMD R1: 1.37± 0.3; R2:1.18± 0.34; R3: 1.12± 0.36) at 12 months. Trabecular TitaniumTM demonstrates a good primary and secondary stability. Preliminary densitometric outcome confirms an optimal osseointegration of the DELTA-TT cup and early clinical and patient subjective results are very promising at a short term follow-up. However, the completions of follow-up evaluation are necessary to draw a conclusive analysis.
The performance of ultra-high molecular weight polyethylene (UHMWPE) used in total joint replacement prosthesis depends on its wear resistance, oxidation resistance and mechanical properties. Several studies have now established that radiation crosslinking by applying a dose of 50–100 kGy gamma or electron beam radiation followed by remelting to quench free radicals fulfils the criterion of high wear resistance as well as oxidation resistance. However, post-irradiation remelting leads to a decrease in several mechanical properties of UHMWPE including fracture toughness and resistance to fatigue crack propagation, which are deemed important for components in joints where they are subjected to high stresses, such as in tibial components. In this study, we used uniaxial compression and high-pressure crystallization to disentangle UHMWPE, expecting that this would assist in increasing its crystallinity since disentangled polymer chains would be more readily incorporated into crystalline lamellae, thereby increasing overall crystallinity. This could then result in an increase in some mechanical properties of irradiated, remelted UHMWPE since high crystallinity is associated with high modulus and yield stress. Uniaxial compression of irradiated, remelted GUR 1050 UHMWPE at 130C to a compression ratio up to 2.5 followed by remelting to recover crystallographic orientation showed no statistically significant increase in crystallinity (p>
0.05, ANOVA). High-pressure crystallization at 500 MPa and temperatures in a range of 130-220C also did not show statistically significant increase in crystallinity of irradiated, remelted UHMWPE. However high-pressure crystallization at 500MPa pressure and 240C, where crystallization occurs via the hexagonal phase, increased the crystallinity from 46.2% to 56.4% (p<
0.05, ANOVA). We conclude that high-pressure crystallization via the hexagonal phase is more effective than uniaxial compression followed by strain recovery or high-pressure crystallization via the orthorhombic phase in increasing the crystallinity of irradiated, remelted UHMWPE, with potential to recover some mechanical properties.
The authors selected for the study young-middle age active patients, with incomplete ACL lesion: 27 patients (mean age of 23 years) have been evaluated, inclusion criteria was Lachman test <
1 cm, negative Jerk test and a proximal partial tear of ACL on MRI. Before and after surgery the patients have been evaluated using KT1000, MRI, clinical examination and Lysholm score with a 3 years average follow up.
The SEM analyses indicated that the PEs surface which was directly in contact with bone shows an anomalous degradation. The surface looks as it has been corroded or “bitten” and its morphology is significantly different from that of surfaces abraded either in vivo or in vitro.
The 5% of the cases presented cicatricial adhaesions, the 10% of the cases presented a light hypoesthesia of the sural nerve. Only one rupture occurred after the re-beginning of the sport activity.