The role of neutrophils and endothelium are an integral part of the inflammatory cascade. Our aim was to investigate whether insulin had an independent effect on endothelial cell activation.
Phenytoin has previously been shown to accelerate wound healing through upregulation of angiogenesis and promotion of collagen deposition. These reported effects led us to hypothesise that phenytoin could be used locally at the tendon repair site to increase the rate and strength of healing. Systemic treatment with phenytoin has also been shown to increase the thickness and density of calvarial and maxillary bones in humans, and promote fracture healing in rabbits, rats and mice. Based on these and similar studies we hypothesised that local percutaneous injection of phenytoin solution into a fracture site would result in improved fracture healing without the risk of the side effects of systemic administration of the drug.
For the fracture study, a rat femur fracture model was utilised. Adult male Sprague-Dawley rats were anaesthetised. Following a medial parapatellar approach, the femur was cannulated using an 18 gauge cannula. The cannula was cut flush with the distal femur and countersunk. The skin and retinaculum were closed with 5.0 monocryl. The nailed femur was then fractured using a 3 point bending technique. The femurs were xrayed to ensure each fracture was mid-diaphyseal and transverse. At 6 hours post op animals underwent either 1) Fracture site percutaneous injection with 100 μmol phenytoin solution 2) Fracture site percutaneous injection with phosphate buffer solution (PBS) 3) No percutaneous injection. This procedure was once again repeated at 72 hours. At 2 and 4 weeks post op 6 animals from each group were euthanased, their femurs were harvested for biomechanical analysis of stiffness and strength.
At both 2 and 4 weeks there was no statistical difference in stiffness or strength of the phenytoin treated fractures compared to controls.
The beneficial effects of insulin in the maintenance of normoglycaemia in non-diabetic myocardial infarct and intensive care patients have recently been reported. Hyperglycaemia and neutrophilia have been shown to be independent prognostic indicators of poor outcome in the traumatised patient. The role of insulin and the maintenance of normoglycaemia in the trauma patient have as yet not been explored. We hypothesised that through the already described anti-inflammatory effects of insulin and the maintenance of normoglycaemia, that neutrophil activation and endothelial dysfunction would be attenuated, in the injured patient. This might result in less adult respiratory distress syndrome (ARDS) and multi-organ dysfunction and therefore less morbidity and mortality for the trauma patient.
Matsen in 1975 described Compartment Syndrome (CS) as a condition in which the circulation and function of tissues within a closed space are compromised by increased pressure within that space. Raised intra-compartmental pressures result in progressive venous obstruction, capillary stagnation and microvascular hypoxia. N-acetyl cysteine (NAC) is an anti-oxidant used clinically to reduce liver injury following paracetamol overdose. NAC has been shown previously to reduce lung injury following exposure to endotoxin. Our aim was to evaluate the efficacy of n-acetyl cysteine in the prevention of CS induced acute muscle injury. Sprague-Dawley rats (n=6/group) were randomised into Control, CS and CS pre-treated with N-Acetyl Cysteine (0.5g/kg i.p. 1 hr prior to induction). Cremasteric muscle was isolated on its neuro-vascular pedicle and CS injury was induced by placing the muscle in a specially designed pressure chamber. Arterial blood pressure was measured via a cannula placed in the carotid artery. To induce compartment syndrome chamber pressure was maintained at diastolic-10 mm Hg. After three hours pressure was released stimulating surgical fasciotomy. One hour after decompression muscle function was assessed by electrical field stimulation: peak twitch (PTV) and maximum tetanus (MTV) values were recorded. Tissue oedema was assessed by wet to dry ratio (WDR). Compartment Syndrome (CS) resulted in a significant decrease in muscle function (PTV, MTV). CS also resulted in a significant increase in tissue oedema (WDR). Pre-Treatment with N-Acetyl Cysteine attenuated CS injury as assessed by these parameters. These data show that administration of the anti-oxidant N-Acetyl Cysteine results in significant attenuation of the muscle injury and oedema caused by Compartment Syndrome. This work was supported by a grant from the Cappagh Trust.
Acute respiratory distress syndrome is a long established complication and continuing cause of significant morbidity and mortality in the multiply injured patient. Systemic inflammatory response syndrome (SIRS) is classically associated with acute pulmonary dysfunction. A variety of insults including trauma, sepsis, hypoxia, ischaemia reperfusion, can trigger systemic inflammatory response and acute lung injury. In models of sepsis, endotoxaemia and ischaemia-reperfusion, acute lung injury is characterised by widespread endothelial-neutrophil interaction and neutrophil activation. Another associated finding in these models of injury, is evidence of induced diaphragm muscle dysfunction, by electrophysiological testing of muscle strips post injury. An established model of incremental increasing skeletal trauma was employed. Adult male sprague dawley rats (mean weight 476grams, 370–520g) were randomised to control, single hindlimb fracture, bilateral hindlimb fracture and bilateral hind limb fracture + 20% haemorrhage. Indices of acute lung injury studied 2 hours post injury were bronchalveolar lavage, cell counts, and protein assays. Pulmonary tissue myeloperoxidase activity was assayed as an indicator of neutrophil activation and pulmonary wet/dry weights were measured as a marker of pulmonary oedema. Diaphragmatic electrophysiological testing was also performed 2 hours post injury. Freshly harvested diaphragmatic muscle strips had peak evoked muscle twitches measured, the maximal tetanic twitch and muscle strip fatigue times were also assessed. Statistical analysis was performed by means of analysis of variance (ANOVA).