Posterolateral spinal fusion (PSLSF) in rabbits is a challenging model for bone substitutes because the transverse processes are extremely thin and the space to be filled with bone is greater than critical and meiopragic in terms of vascularity. Several investigators have shown beneficial effects of PRP in bone and soft-tissue healing processes. However, controversial results have been reported in clinical setting analysing the effectiveness of PRP. Aim of the present study was to test the effectiveness of PRP in experimental model of PLSF in rabbits. 20 White females New Zeland Rabbits were used. Seven rabbits (Group 1) had PRP plus carrier on the right side (Group 1A) and plus carrier and fresh bone marrow on the left side (Group 1B). Seven rabbits (Group 2) had carrier alone on the right side (Group 2A) and carrier plus fresh bone marrow on the left side (Group 2B). Six rabbits (Group 3) had sham operation on both right and left sides. Animals were sacrificed 6 months after surgery and the lumbar spine submitted to radiolographic and histologic analysis. Vascular density (VD) was also assessed in the different zone of the grafted material. Radiographs showed a complete fusion in 83% of group 1A and in 83% of group 1B, and in 86% of group 2A and 2B. Pseudarthrosis or non union, was observed in 1 specimen of group 1B and 2A and in all specimens of group 3 (sham). In contrast to radiographic results, no specimen showed a complete bony bridge between the transverse processes on histologic analysis. VD was significantly greater in the periapophyseal compared to the interapophyseal region of the graft material. However, no significant difference was found in the VD between groups.MATERIAL AND METHODS
RESULTS
Posterolateral spinal fusion is considered one of the most challenging condition for bone graft substitutes since using autogenous bone graft pseudarthrosis have been reported in 30% of cases.
1) the cell-biomaterial constructs which per se were highly efficient in previous animal studies, used in different absolute quantities but identical ratios were not efficient in the direct preclinical model. 2) Radiography alone is misleading. 3) Once efficient cell and material preparations are obtained, additional consideration must be given to specific circumstances of the pre-clinical and clinical application such as mobility of the graft and its component and vascularization of the graft bed.
Since several spinal conditions are currently treated with spinal fusion, alternatives to autogenous bone graft in spinal surgery have been under study for many years. Results have shown that, compared to other non.-spinal conditions, such as filling bone cavities, spinal fusion, in particular posterolateral fusion, is much more challenging due to the reduced area of the graft bed. As a result, most of the bone substitutes are still under investigation and their effectiveness in the clinical setting has yet to be demonstrated. In recent years the authors analysed several bone graft substitutes using an animal model which has been widely used in experimental spinal fusion. In particular, porous ceramics have been used alone or with osteoin-ductive material such as fresh bone marrow or cultured mesenchymal stem cells. The results of these studies have shown that with ceramic alone a percentage of solid fusion similar to that with autogenous bone graft cannot be achieved. However, compared to the latter, more favorable results have been obtained when ceramics are loaded with mesenchymal stem cells. The addition of fresh bone marrow to ceramics also increases the fusion rates; however, in this case new bone formation was mainly found in the peripheral portions of the graft and to a lesser extent than when cultured mesenchymal stem cells were used.