header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 144 - 144
1 May 2016
Galasso O Balato G Catania M Gasparini G Mariconda M
Full Access

Introduction

The use of antibiotic-loaded polymethylmethacrylate bone-cement spacers during two-stage exchange procedures is the standard in the treatment of patients with delayed prosthetic joint infection. The real antimicrobial activity of these spacers is unclear because the adherence of bacteria to cement might result in clinical recurrence of infection. The purpose of the study is to evaluate the in vitro formation of Pseudomonas Aeruginosa (PA) and Staphylococcus spp. biofilm on antibiotic-loaded bone cement.

Materials and methods

Cement disks (diameter = 6 mm) impregnated with gentamicin and colistin were submerged in bacterial suspensions of Methicillin-resistant Staphylococcus Aureus(MRSA), Staphylococcus epidermidis (SE), and PA. Negative controls (specimen disks without antibiotic) were similarly prepared. Biofilm formation was visualized by confocal scanning laser microscopy (CSLM), after staining the discs with the live/dead BacLight viability stain containing SYTO 9 dye and propidium iodide. Images from five randomly selected areas were acquired for each disc. Sequential optical sections of 2 µm were collected in sequence along the z-axis over the complete thickness of the sample. The resulting stacks of images were analyzed, quantified and rendered into three-dimensional (3D). The biofilm thickness on antibiotic bone cement compared with the controls was automatically evaluated.