Different subclinical neurological dysfunction has been reported in adolescent idiopathic scoliosis (AIS), including poor postural control and asymmetric otolith vestibulo-ocular responses when compared with normal controls. The objective of this pilot study is to establish whether abnormal MRI morphoanatomical changes arise in the CNS (brain and vestibular system), among left-thoracic versus right-thoracic AIS when compared with normal adolescent controls, with use of advanced computerised statistical morphometry techniques. We compared nine girls with left-thoracic AIS (mean age 14 years; mean Cobb angle 19°) with 11 matched controls, and 20 girls with right-thoracic AIS (mean age 15 years, mean Cobb angle 33·8°) with 17 matched controls. The statistical brain analysis was done with validated automatic segmentation and voxel-based morphometry (VBM). The T2W-MRI data for shape analysis of the vestibular system were obtained from 20 patients with right-thoracic AIS and 20 matched controls. A best-fit plane and a best-fit circle were calculated to approximate each semicircular canal. The shape of vestibular system was measured by: (1) the angle between each pair of best-fit planes; (2) the length; and (3) angle formed between the corresponding lines connecting the centres of each pair of circles. Statistical analysis was done with one-way ANOVA.Introduction
Methods
In patients with adolescent idiopathic scoliosis (AIS), anomalous extra-spinal left-right skeletal length asymmetries in upper limbs, periapical ribs, and ilia beg the question as to whether these bilateral asymmetries are connected in some way with pathogenesis. The upper arm and iliac length asymmetries correlate significantly with adjacent spinal curve severity respectively in thoracic and lower (thoracolumbar and lumbar) spine. In lower limbs, skeletal length asymmetries and proximo-distal disproportion are unrelated to spinal curve severity. Overall, these observations raise questions about mechanisms that determine skeletal bilateral symmetry of vertebrates in health and disorder, and whether such mechanisms are involved in the cause of this disease. We investigated upper arm length (UAL) asymmetries in two groups of right-handed girls aged 11–18 years, with right thoracic adolescent idiopathic scoliosis (RT-AIS, n=98) from preoperative and screening referrals (mean Cobb angle 45°) and healthy controls (n=240). Right and left UAL were measured with a Harpenden anthropometer of the Holtain equipment, by one of four observers (RGB, AAC, RKP, FJP). UAL asymmetry was calculated as UAL difference, right minus left, in mm. Repeatability of the measurements was assessed by technical error of the measurement (TEM) and coefficient of reliability (R).Introduction
Methods
Melatonin’s concentration is high in early childhood and declines gradually thereafter. In the elderly serum melatonin levels are very low. Melatonin, the “light of night”, among other functions is involved in human sexual maturation and in osteogenesis. Hormesis is the response of cells or organisms to an exogenous (eg drug or toxin) or intrinsic factors (eg hormone), where the factor induces stimulatory or beneficial effects at low doses and inhibitory or adverse effects at high doses [bimodal dose-response] or vice versa. At the age around 10 years, when idiopathic scoliosis may appear, the circulating melatonin level is about 120 pg/ml – positive hormesis for menses – and menarche appears. Melatonin deficiency may result in a delay of the age at menarche and consequently the girl is susceptible to scoliosis. In these terms melatonin could be certainly involved in the scoliosis pathogenesis. Around the age of 45 years when the circulating melatonin levels are about 20 pg/ml – negative hormesis for menses, menopause starts and the woman has an increased risk for osteoporosis and fractures. It is documented the bone-protecting effect of melatonin in ovariectomized rats which can depend in part on the free radical scavenging properties of melatonin. Additionally, melatonin may impair development of osteopenia associated with senescence by improving non-rapid eye movement sleep and restoring GH secretion. Whether modulation of melatonin blood levels can be used as a novel mode of therapy for scoliosis and augmenting bone mass in diseases deserves to be studied
This paper evaluates severe normal trunk asymmetry (TA) by higher and lower body mass index (BMI) values in 5953 adolescents age 11–17 years (boys 2939, girls 3014) whilst standing forward bending (FB) and sitting FB during screening for scoliosis. TA was measured as angle of trunk inclinations (ATIs) across the back (thoracic, thoracolumbar and lumbar) with abnormality defined as 2 standard deviations or more. The findings for sitting FB position are reported because the readings express TA free from any leg-length inequality. Relatively lower BMIs are associated statistically with
excess of abnormal TAs, and later menarche. BMI is known to be linked to puberty timing and energy balance but not to TAs in healthy students. Similar to girls with adolescent idiopathic scoliosis, we suggest that severe TA is caused by a genetically-determined selectively increased hypothalamic sensitivity to leptin with asymmetry as an adverse hormetic response, exacerbated by presumed lower circulating leptin levels associated with relatively lower BMIs. The asymmetry is expressed bilaterally via the sympathetic nervous system to produce left-right asymmetry in ribs and/or vertebrae leading to severe TA when beyond the capacity of postural mechanisms of the somatic nervous system to control the shape distortion of the trunk
The possibility that AIS aetiology involves undetected neuromuscular dysfunction is considered likely by several workers [1,2]. Yet in the extensive neuroscience research of idiopathic scoliosis certain neurodevelopmental concepts have been neglected. These include [3]:
a CNS body schema (“body in the brain”) for posture and movement control generated during development and growth by establishing a long-lasting memory, and pruning of cortical synapses at puberty. During normal development the CNS has to adapt to the rapidly growing skeleton of adolescence, and in AIS to developing spinal asymmetry from whatever cause. Examination of publications relating to the CNS body schema, parietal lobe and temporo-parietal junction [4,5] led us to a new concept: namely, that a delay in maturation of the CNS body schema during adolescence with an early AIS deformity at a time of rapid spinal growth results in the CNS attempting to balance the deformity in a trunk that is larger than the information on personal space (self) already established in the brain by that time of development. It is postulated that this CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The maturational delay may be primary in the brain or secondary to impaired sensory input from end-organs [6], nerve fibre tracts [2,7,8] or central processing [9,10]. The motor component of the concept could be evaluated using transcranial magnetic stimulation [11].
In subjects with lumbar, thoracolumbar or pelvic tilt scoliosis no pattern of structural leg length inequality has been reported [1]. Forty-seven girls of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis – lumbar (LS) 17, or thoracolumbar (TLS) 30 (mean Cobb angle 16 degrees, range 4–38 degrees, mean age 14.8 years, left curves 25). The controls were 280 normal girls (11–18 years, mean age 13.4 years). Anthropometric measurements were made of total leg lengths (LL), tibiae (TL) and feet (FL) by one observer (RGB) and asymmetries calculated for LL, TL and FL, as absolutes and percentage asymmetries of right/left lengths. There are no detectable changes of absolute asymmetries with age for LL, TL or FL in scoliotic or normal girls. Asymmetries are found in scoliotic girls compared with normals with relative lengthening on the right for each of LL (0.95%) and TL (0.99%) (each p<
0.001), but not FL (0.38%).
Nachemson [2] suggested that there are more girls than boys with progressive AIS for the following reason. The maturation of postural mechanisms in the nervous system is complete about the same time in boys and girls. Girls enter their skeletal adolescent growth spurt with immature postural mechanisms. So, if they have a predisposition to develop a scoliosis curve, the spine deforms. In contrast, boys enter their adolescent growth spurt with mature postural mechanisms so they are protected from developing a scoliosis curve. We termed Nachemson’s concept the neuro-osseous timing of maturation (NOTOM) hypothesis and used it to propose a possible medical treatment for idiopathic scoliosis by delaying puberty through the pituitary using gonadorelin analogues as in idiopathic precocious puberty [3,4]. The prevalence of scoliosis is reported to be increased in rhythmic gymnasts (RGs) in Bulgaria [5] and in ballet dancers (BDs) in the USA [6]. Both groups exhibit delayed puberty, which, at first sight, nullifies the NOTOM hypothesis for idiopathic scoliosis. There are similarities between scoliotic RGs and BDs that include intensive exercise from a young age, dieting, delayed menarche, increased scoliosis prevalence (RGs 12%, BDs 24%), mild scoliosis curves (10–30 degrees), and presumably generalised joint laxity. Other differences in addition to country of origin and exercises, include certain anthropometric features and importantly in RGs, thoracolumbar and lumbar curves and, in BDs, right thoracic curves. While constitutional and environmental factors may determine the scoliosis, the different curve types in RGs and BDs suggest that the exercise pattern over many years determines which type of scoliosis develops, although not the curve severity.
In our earlier study we found 61% of the controls taken swimming in the first year of life had vertical spinous process asymmetry. In the subsequent smaller study the incidence even higher (83%).
The evidence reported in our earlier paper suggests that infants introduced to indoor heated swimming pools in the first year of life show an association with spinal asymmetries including progressive AIS and in controls vertical spinous process asymmetry. Subject to confirmation of our observations consideration should be given to chemical risk factors, possible portals of entry, environmental epigenomics and disease susceptibility to altered spinal development. Subsequent controls confirm that the introduction to indoor heated swimming pools in the first year of life is associated with the development of spinal asymmetries.
Patterns of extra-spinal skeletal length asymmetry have been reported for upper limbs [1] and ribcage [2] of patients with upper spine adolescent idiopathic scoliosis. This paper reports a third pattern in the ilia. Seventy of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spine scoliosis – lumbar (LS), thoracolumbar (TLS), or pelvic tilt scoliosis (PTS). Radiologic bi-iliac and hip tilt angles were both measurable in 60 subjects: LS 18, TLS 31, and PTS 11 (girls 44, boys 16, mean age 14.6 years). Cobb angle (CA), apical vertebral rotation (AVR) and apical vertebral translation from the T1-S1 line (AVT) were measured on standing full spine radiographs (mean Cobb angle 14 degrees, range 4–38 degrees, 33 left, 27 right curves). Bi-iliac tilt angle (BITA) and hip tilt angle (HTA) were measured trigonometrically and iliac height asymmetry calculated as BITA minus HTA (corrected BITA=CBITA) and directly as iliac height asymmetry. Iliac height is relatively taller on the concavity of these curves (p<
0.001). CBITA is associated with Cobb angle, AVR and AVT (each p<
0.001).
In schoolchildren screened for scoliosis about 40% have minor, non-progressive, lumbar scolioses secondary to pelvic tilt with leg-length and/or sacral inequality [1] not reported with preoperative thoracic curves [2]. Forty-nine of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis with measurable radiological sacral alar and hip tilt angles – lumbar scoliosis 18, thoracolumbar scoliosis 31 (girls 41, boys 8, mean Cobb angle 16 degrees, range 4–38 degrees). In standing full spine antero-posterior radiographs measurements were made of Cobb angle and pelvic asymmetries as sacral alar and iliac heights (left minus right). From anthropometric measurements derivatives were calculated as ilio-femoral length (total leg length minus tibial length) and several length asymmetries, namely: ilio-femoral length asymmetry, total leg length inequality and tibial length asymmetry (all left minus right). Ilio-femoral length asymmetry correlates significantly with sacral alar height asymmetry (girls negatively r= − 0.456, p=0.002, boys positively r=0.726 p=0.041) but not iliac height asymmetry (girls p=0.201) from which three types are identified. Total leg length inequality but not tibial length asymmetry in the girls is associated with sacral alar height asymmetry (r= − 0.367 p=0.017 &
r=0.039 p=0.807 respectively). Interpretation is complicated by total leg lengths each including some ilium in which there is asymmetry [3]. But lack of association between ilio-femoral length asymmetry and iliac height asymmetry suggests that the femoral component is more important than iliac component in determining the associations between sacral alar height asymmetry and each of ilio-femoral length asymmetry and total leg length inequality.
Sacral alar height asymmetry and leg length asymmetries. The evidence suggests that sacral alar height asymmetry is not secondary to the leg length inequalities at least in most girls (negative correlations) and is more likely to result from primary skeletal changes in femur(s) and sacrum. Sacral alar height asymmetry and Cobb angle. Scoliosis progression and iliac height asymmetry [3] appear to need factors additional to those that determine ilio-femoral length asymmetry – for in the girls Cobb angle is associated with both sacral alar height asymmetry and iliac height asymmetry (each p<
0.001) but not with either ilio-femoral length asymmetry (p=0.249) or total leg length inequality (p=0.650). The additional factors may be biomechanical [4], and/or biological in the trunk [5] and central nervous system [6].
The side distribution of single spinal curves in our school screening referrals for 1988–99 (n=218) suggests that the mechanism(s) determining curve laterality for the upper spine differs from those for the lower spine. We address here the laterality of right thoracic AIS. In the search to understand the aetiology of AIS some workers focus on mechanisms initiated in embryonic life including a disturbance of bilateral symmetry. The
Most workers consider that ribcage changes in AIS are secondary to spinal deformity. Others claim that ribs are pathogenic in curve initiation or aggravation. In 117 consecutive patients referred from school screening in 1996–99 and routinely scanned by ultrasound, 24 had thoracic and 33 thoracolumbar scolioses (right 37, left 20; mean age 14.9 years, range 12–18 years, girls 44 postmenarcheal 37, boys 13). On anteroposterior standing radiographs, Cobb angle (CA), apical vertebral rotation (AVR, Perdriolle) and apical vertebral translation (AVT from the T1-S1 line) were measured (mean &
range: CA 19°, 6–42°; AVR 15°, 0–39°; AVT 17 mm, 0–38 mm). Real-time ultrasound in the prone position recorded laminal rotation (LR) and rib rotation (RR) segmentally and the spine-rib rotation difference (SRRD) as LR
Several workers consider that the aetiology of adolescent idiopathic scoliosis (AIS) involves undetected neu-romuscular dysfunction. During normal development the central nervous system (CNS) has to adapt to the rapidly growing skeleton of adolescence, and in AIS also to developing spinal asymmetry from whatever cause. A new etiologic concept is proposed after examining the following evidence:
anomalous extra-spinal left-right skeletal length asymmetries of upper arms, ribs, ilia and lower limbs suggesting that asymmetries may also involve vertebral body and costal growth plates; growth velocity and curve progression in relation to scoliosis curve expression; the CNS body schema, parietal lobe and temporoparietal junction in relation to postural mechanisms; and human upright posture and movements of spine and trunk. The central of four requirements is maturational delay of the CNS body schema relative to skeletal maturation during the adolescent growth spurt that disturbs the normal neuro-osseous timing of maturation. With the development of an early AIS deformity at a time of rapid spinal growth the association of CNS maturational delay results in postural mechanisms failing to balance a lateral spinal deformity in an upright moving trunk that is larger than the information on personal space (self) established in the brain by that time of development. It is postulated that CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The concept brings together many findings relating AIS to the nervous and musculoskeletal systems and suggests brain morphometric studies in subjects with progressive AIS.
Nachemson [2] drawing upon the theses of Sahlstrand [3] and Lidström [4] articulated the view there are more girls than boys with progressive AIS for the following reason. The maturation of postural mechanisms in the nervous system is complete about the same time in boys and girls. Girls enter their skeletal adolescent growth spurt with immature postural mechanisms – so if they have a predisposition to develop a scoliosis curve, the spine deforms. In contrast, boys enter their adolescent growth spurt with mature postural mechanisms so they are protected from developing a scoliosis curve. We term Nachemson’s concept the neuro-osseous timing of maturation (NOTOM) hypothesis [1,5] The earlier sexual and skeletal maturation of girls may have an evolutionary basis through natural selection. Curve progression in AIS is associated with acceleration of the adolescent growth spurt [6]. Postural sway involves proprioceptive, vestibular and visual input to the central nervous system. In normal children there is a significant reduction in postural sway amplitude between six to nine years and 10–14 years [7,8]. In 1071 normal children aged 6–14 years postural sway is more stable in girls from 6–9 years and over 10 years there is no sex effect [9]; all these findings fit the Nachemson concept. But in view of a subsequent report on 64 normal children aged 3–17 years showing the change with age is limited to boys [10] the age and sex effect of postural sway in healthy children needs further evaluation. In AIS children stabilometry findings are conflicting and observed greater postural sway may be secondary to the curve. In the siblings of scoliotics Lidström et al [11] concluded that postural aberration is a factor in the aetiology of AIS.
In idiopathic scoliosis the detection of extra-spinal left-right skeletal length asymmetries in the upper limbs, ribs, ilia and lower limbs [1–7] begs the question: are these asymmetries unconnected with the pathogenesis, or are they an indicator of what may also be happening in immature vertebrae of the spine? The vertebrate body plan has mirror-image bilateral symmetries (mirror symmetrical, homologous morphologies) that are highly conserved culminating in the adult form [8]. The normal human body can be viewed as containing paired skeletal structures in the axial and appendicular skeleton as a) separate left and right paired forms (e.g. long limb bones, ribs, ilia), and b) united in paired forms (e.g. vertebrae, skull, mandible). Each of these separate and united pairs are mirror-image forms – enantiomorphs. In idiopathic scoliosis, genetic and epigenetic (environmental) mechanisms [9–11] may disturb the symmetry control of enantiomorphic immature bones [12–13] and, by creating left-right endochondral growth asymmetries, cause the extra-spinal bone length asymmetries, and within one or more vertebrae create growth conflict with distortion as deformities (= unsynchronised bone growth concept) [14].
Left-right skeletal length asymmetries in upper limbs related to curve side have been detected with adolescent thoracic idiopathic scoliosis (AIS). In school screening referrals with thoracic scoliosis we find apical vertebral rotation (AVR, Perdriolle) is associated significantly with upper arm length asymmetry. Sixty-nine of 218 consecutive adolescent patients referred routinely during 1988–1999 had
Anterior instrumentation for thoracic AIS has advanced to a point where it can be widely adopted, particularly if the patient expresses concerns regarding the rib hump or is hypokyphotic.