header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 8 - 8
1 Feb 2017
Al-Hajjar M Vasiljeva K Heiner A Kruger K Baer T Brown T Fisher J Jennings L
Full Access

Introduction

Previous studies have shown that third body damage to the femoral head in metal-on-polyethylene hip replacement bearings can lead to accelerated wear of the polyethylene liners. The resulting damage patterns observed on retrieved metal heads are typically scratches and scrapes. The damage created in vitro must represent the third body damage that occurs clinically. A computational model was developed to predict the acceleration of wear of polyethylene articulating against in vitro damaged femoral heads. This involved using a damage registry from retrieval femoral heads to develop standardized templates of femoral head scratches statistically representative of retrieval damage

The aim of this study was to determine the wear rates of polyethylene liners articulating against retrievals and artificially damaged metal heads for the purpose of validating a computational wear prediction model; and to develop and validate an in vitro standardised femoral head damage protocol for pre-clinical testing of hip replacements.

Materials and Methods

Twenty nine, 32mm diameter, metal-on-moderately cross-linked polyethylene bearings (MarathonTM) inserted into Ti-6Al-4V shells (Pinnacle®) were tested in this study. All products were manufactured by DePuy Synthes, Warsaw, Indiana, USA. Following a retrieval study seven different damage patterns were defined, and these were applied to the femoral heads using a four-degree-of-freedom CNC milling machine (Figure 1). The ProSim 10-station pneumatic hip joint simulator (Simulation Solutions, UK) was used for experimental wear simulation using standard gait cycles and testing each experimental group for 3 million cycles. The acetabular cups were inclined at 35° on the simulator (equivalent to 45° in vivo). The wear volumes were determined using a microbalance (Mettler-Toledo XP205, Switzerland) at one million cycle intervals. Statistical analysis used was one way ANOVA followed by a post hoc analysis with significance taken at p<0.05.