Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2022
Borciani G Montalbano G Melo P Baldini N Ciapetti G Brovarone CV
Full Access

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. Following chemical crosslinking with genipin, the nanostructured materials were tested for 2–3 weeks with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors. The favourable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of bone cells, encouraging a further investigation of the two bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 41 - 41
1 Mar 2021
Pontremoli C Berkmann JC Martin AXH Ellinghaus A Schmidt-Bleek O Laurano R Boffito M Turo CT Schmidt-Bleek K Duda GN Fiorilli S Brovarone CV
Full Access

Mesoporous bioactive glasses (MBGs) have been widely studied as bone regeneration systems, due to their bioactivity and ability to store and release therapeutic agents with specific biological functions. The incorporation of these nanomaterials into a thermosensitive hydrogel (TSH), in which a solution undergoes a sol-gel transition under physiological conditions, represents a promising approach to design multifunctional devices able to deliver selected molecules to pathological sites. In fact, this system can perfectly fit the defect cavity shape prior to the complete gelation, and acts as a carrier for therapeutic agents prolonged release in situ. This challenging concept is the underlying idea of the MOZART project, whose objective was to develop a library of MBGs containing different therapeutic ions and drugs, to be used as a new, smart platform technology for highly targeted therapies to enhance bone healing. The aim of this work is to investigate the bone regeneration potential of MBGs containing strontium ions (pro-osteogenic) and incorporated into thermosensitive poly(etherurethane)(PEU) based on Poloxamer407. In order to further increase the pro-osteogenic response, MBGs were also loaded with N-acetylcysteine (NAC).

MBGs containing 2%mol of Sr2+ were prepared by an aerosol-assisted spray-drying method and NAC was loaded post-synthesis via an incipient wetness method. The PEU hydrogel (SHP407) was synthesized via a two-step procedure in nitrogen atmosphere. Particles were characterized (FE-SEM, N2 adsorption-desorption analysis, TGA, DSC, FT-IR and XRD) and then incorporated into the hydrogel. The hybrid systems rheological properties and stability in aqueous environment at 37°C, and its ability to co-release Sr2+ and NAC were analysed. After preliminary biological in vitro tests, a proof-of-concept rodent study was run to assess the ability of the resulting formulation as bone healing device. X-ray at 2 and 4-weeks post-surgery and µCT-analysis were used to evaluate the healing results in a rat osteotomy model of biologically impaired healing. Then, bones were processed for histological evaluation.

Preliminary in vivo results demonstrated that incorporation of MBGs into a TSH is a promising strategy to design a multifunctional injectable formulation for in situ and sustained delivery of pro-osteogenic species enhancing bone regeneration.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 265 - 265
1 May 2009
Vernè E Ferraris S Spriano S Brovarone CV Bianchi C Morra MM Cassinelli C
Full Access

Aims: The aim of the research is the functionalization of biosurfaces by anchoring on them biomolecules involved in the process of osteointegration (cellular adhesion, proliferation, differentiation, migration, matrix mineralization). Alkaline phosphatase (ALP) was used as model protein, because it is involved in the mineralization processes. The functionalized surfaces are biomimetic, because they show the biological signals triggering new tissue generation. A rapid osseointegration are the final goal and a good response and fast healing of bad quality bones is one of the main issues. The devices of interest for the research are dental or orthopaedic implants and substitutes of small bones.

Methods: Bioactive glasses of various compositions were employed as substrates. Bioactive glasses, when in contact with biological fluids, stimulate the precipitation of a hydroxyapatite layer on their surfaces, which in turn promotes effective osteointegration of the implant. Since bioactive glasses are prone to hydroxylation, they could be successfully functionalized and grafted by biomolecules. So the biomimetic materials considered will be bioactive both from a physicochemical (osteoconduction and apatite precipitation) and from a biochemical (osteoinduction) point of view. The research was focused first of all on the methods for developing active sites on the substrates. In the case of bioactive glasses the surface must be cleaned of any contaminants and the reactive hydroxyls activated.

Results: The immobilization of ALP was performed both with and without spacer molecules and a comparison among the different techniques will be presented. XPS was used for the analysis of the immobilized enzyme on titanium and bioglasses and specific signals for its identification were set. After the addition of the specific substrate, the ALP activity was evaluated by UV-VIS spectroscopy.

Conclusions: ALP was successfully grafted on the surface of bioactive glasses with and without the use of an intermediate layer of spacer molecules. The presence of ALP was determined on all the samples, as well as its enzymatic activity. Further analyses are necessary to evaluate the opportunity of using a spacer molecule. Cell adhesion and proliferation tests are in progress.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 65 - 65
1 Mar 2005
Brovarone CV Vernè E Bosetti M Cannas M
Full Access

Aims: The aim of this research work was the realization of an inorganic bioactive scaffold for bone regeneration. This biomaterial should be macroporous, in order to allow the bone in-growth, and bioactive aiming to promote the bone regeneration and healing.

Methods: The macroporous biomaterial was prepared by consolidation of a suspension of starch and SiO2-CaO-Na2O-MgO glass powders. Starch powders were used as both pore former and consolidation agent. Starch-glass green bodies were prepared by uniaxial pressing and, after drying, they were heated to remove the organic phase and to sinter the inorganic one. The sintered scaffolds were characterized by X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry. The scaffolds bioactivity was evaluated soaking the samples in a simulated body fluid for periods up to 4 weeks. On the most representative samples, in vitro tests of adhesion and proliferation were performed using human primary osteoblast-like cells.

Results: The obtained scaffolds showed an interconnected macroporosity of 50–100 B5m and a satisfactory degree of sintering. The sintering treatment induced the nucleation and growth of Na2Ca2(SiO2)3 crystals which is a phase that possess a very high bioactivity index. By soaking the scaffolds in SBF for period up to 1 month, an extensive precipitation of hydroxylapatite, with the typical globular morphology, occurred both inside and outside the pores. The adhesion and proliferation tests showed a remarkable spreading of the osteoblasts on the scaffold surface and thus a good biological response.

Conclusions: Scaffolds with interconnected porosity were successfully obtained. The pores are highly interconnected and homogenously distributed in the samples. The chosen thermal treatment and the use of starch powders led to a final macroporous glass-ceramic structure. The obtained scaffolds showed a very high in vitro bioactivity with precipitation of HAp. Moreover, preliminary biological tests, showed a satisfactory cellular interaction with the proposed biomaterials. For the above-mentioned reasons, the starch consolidation method, the optimized processing parameters and the tailored glass composition can be used to produce scaffolds suitable for bone substitutions and tissue engineering.