Using the trabecular bone bioreactor (ZETOS) developed in our laboratories we have investigated the formation of bone using the fluorescent bone seeking markers calcein and alizarin red. And the association of bone formation with the increase in stiffness with mechanical loading. 10 mm diameter bone cores 5 mm thick were obtained from the distal radius /ulna of cows obtained at the slaughter house. by precision cutting with diamond saws and keyhole cutters (our pattern) in sterile 7–10°C phosphate buffered saline (PBS) and cultured in a variation of DMEM containing fructose HI GEM.
We gratefully acknowledge support by the German Arthrose Foundation (DAH) and the AO in Davos, CH. DJ is a recipient of a Fork award from the AO
One of the mechanisms which controls bone growth, repair remodeling and absorption is mechanical loading. There exists no long-term in vitro model to study bone cells together with their matrix, nor a model that can apply quantitative mechanical forces of physiological amplitudes and frequencies. The analysis of the mechanical properties of bone (Young’s modulus and visco-elastic moduli) on small pieces of bone is also difficult with present devices. We have built a device that can maintain full viability and physiological response of bone for a period of several weeks and integrates all three functions. 10mm diameter bone cores 5 mm thick were obtained from the trabecular bone of the distal ulna of a 24 months old cow by precision cutting with diamond saws and keyhole cutters (our pattern) in sterile 7–10°C phosphate buffered saline (PBS) and cultured in a variation of DMEM containing fructose HI GEM.
We gratefully acknowledge support by the German Arthrose Foundation (DAH) and the AO in Davos, CH.