header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 28 - 28
24 Nov 2023
De Vecchi E Balzano V Bottagisio M Gavioli L
Full Access

Aim

Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the antimicrobial properties of two multielement nanogranular coatings composed of Titanium-Silver and Copper and of Magnesium-Silver and Copper.

Method

Ti-Ag-Cu and Mg-Ag-Cu NPs were deposited on circular cover glasses (VWR) by Supersonic Cluster Beam Deposition. Biofilm-producer strains of Staphylococcus aureus (methicillin susceptible and resistant), Staphylococcus epidermidis (methicillin susceptible and resistant), Escherichia coli (fully susceptible and producer of extended spectrum beta lactamases), and Pseudomonas aeruginosa (susceptible and multidrug-resistant) were selected. The abilities of the selected strains to adhere, colonize and produce biofilm on the discs coated with Ti-Ag-Cu or Mg-Ag-Cu NPs were compared to uncoated circular cover glasses which were used as growth control. Cytotoxicity was also evaluated in order to assess the biocompatibility of the newly synthesized NPs.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 7 - 7
1 Oct 2022
Bottagisio M Viganò M Zagra L Pellegrini A De Vecchi E
Full Access

Aim

The analysis of synovial fluid has proved to be of crucial importance in the diagnostic process of prosthetic joint infections (PJI), suggesting the presence of an infection before the microbiological culture results. In this context, several studies illustrated the efficacy of synovial calprotectin in supporting the diagnosis of PJI [1, 2]. However, several testing methods have been explored to detect synovial calprotectin levels, emphasizing the need to use a standardized, rapid and rapid test.

In this study, synovial calprotectin was analyzed by means of a commercial stool test [3] to explore whether the detected levels might predict PJIs and, therefore, being a promising tool for the fast and reliable diagnosis of this complication.

Method

The synovial fluid of 55 patients underwent to revision of the prosthetic implant were analyzed. The measurement of calprotectin was carried out by of commercial stool test, following the protocol for liquid samples. Calprotectin levels were then compared to other synovial biomarkers of PJI such as leucocyte esterase and count and percentage of polymorphonuclear cells.

Data analysis were performed using R software v4.1.1 (R Core Team) and package “pROC” [4]. Receiver operator characteristics curves were designed using culture test as gold standard to evaluate the area under curve (AUC) of each method (with DeLong method for confidence-interval calculation). Thresholds were calculated to maximize Youden's index; sensitivity and specificity were reported. One-to-one Pearson's correlations coefficient were calculated for each pair of methods. P value <0.05 were considered statistically significant.


Aim

Bone and implant-associated infections caused by microorganisms that grow in biofilm are difficult to treat because of persistence and recurrence. Systemic administration of antibiotics is often inefficient because the poor vascularization of the site of infection. This issue has led to the development of biomaterials capable to locally deliver high doses of therapeutic agents to the injured bone with minimal systemic effects. In this context, calcium sulphate/hydroxyapatite (CS/HA) bone graft substitutes are widely used being safe, osteoconductive and resorbable biomaterials that can be easily enriched with consistent amounts of antibiotics. In this in vitro study, the capability of the eluted antibiotics to select the tested bacterial strains for antibiotic resistance was evaluated to confirm the safe use of the product.

Method

S. aureus, S. epidermidis and P. aeruginosa isolated in our Institute from bone and joint infection with different resistance phenotypes were used. 6 × 2.5 mm CS/HA discs were generated by pouring the antibiotic loaded formulations in a mold and were used as a modified disk diffusion test. The resistance selection was evaluated by subculturing cells growing on the edge of the zone of inhibition (ZOI) for seven days. Minimum inhibitory concentrations (MICs) of gentamicin and vancomycin were determined by broth microdilution method before and after the selection of resistance assay. In addition, MICs were assessed after seven day passage on antibiotic free agar plates to evaluate if eventual decrease of antibiotic susceptibility was stable or only transient.