Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 69 - 69
1 Mar 2021
Sahm F Grote VF Detsch R Kreller T Boccaccini A Bader R Jonitz-Heincke A
Full Access

Several electrical fields are known to be present in bone tissue as originally described by Fukada and Yasuda in the year 1957. Intrinsic voltages can derive from bone deformation and reversely lead to mechanical modifications, called the piezoelectric effect. This effect is used in the clinic for the treatment of bone defects by applying electric and magnetic stimulation directly to the bone supplied with an implant such as the electroinductive screw system. Through this system a sinusoidal alternating voltage with a maximum of 700 mV can be applied which leads to an electric field of 5–70 V/m in the surrounding bone. This approach is established for bone healing therapies. Despite the established clinical application of electrical stimulation in bone, the fundamental processes acting during this stimulation are still poorly understood. A better understanding of the influence of electric fields on cells involved in bone formation is important to improve therapy and clinical success.

To study the impact of electrical fields on bone cells in vitro, Ti6Al4V electrodes were designed according to the pattern of the ASNIS III s screw for a 6-well system. Osteoblasts were seeded on collagen coated coverslip and placed centred on the bottom of each well. During four weeks the cells were stimulated 3×45 min/d and metabolic and alkaline phosphatase (ALP) activity as well as gene expression of cells were analysed. Furthermore, supernatants were collected and proteins typical for bone remodelling were examined.

The electrical stimulation did not exert a significant influence on the metabolic activity and the ALP production in cells over time using these settings. Gene expression of BSP and ALP was upregulated after the first 3 days whereas OPG was increased in the second half after 14 days of electrical stimulation. Moreover, the concentration of the released proteins OPG, IL-6, DKK-1 and OPN increased when cells were cultivated under electrical stimulation. However, no changes could be seen for essential markers, like RANKL, Leptin, BMP-2, IL-1beta and TNF-alpha.

Therefore, further studies will be done with osteoblasts and osteoclasts to study bone remodelling processes under the influence of electrical fields more in detail. This study was supported by the German Research Foundation (DFG) JO 1483/1-1.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 3 - 3
1 May 2012
EL-Gendy R Boccaccini A Newby P Kirkham J Yang X
Full Access

Stromal cells derived from human dental pulp (HDPSCs) are of current interest for applications in skeletal tissue engineering. Angiogenesis and revascularization of bone grafts or bone constructs in vivo are of paramount importance for bone tissue regeneration and/or fracture healing. The aim of this study was to investigate the angiogenic and osteogenic potential of HDPSCs in combination with Bioglass¯ scaffolds in vitro and in vivo.

HDPSCs, isolated by collagenase digestion, were either maintained as monolayers or dynamically seeded on 3D Bioglass¯ scaffolds and cultured under either basal or osteogenic conditions for 2 and 4 weeks. Expression of osteogenic (COL1A1, ALP, RUNX2 and OC) and angiogenic markers (VEGFR2, CD34 and PECAM1) was determined using qRT-PCR. Alternatively, constructs were either cultured in vitro under basal/osteogenic conditions for 6 weeks or sealed in diffusion chambers which were then implanted intraperitoneally in immunosuppressed mice for 8 weeks. Retrieved constructs were fixed and embedded for histology and immunohistochemistry using antibodies against COL1, RUNX2, OC, VEGFR2, CD34 and PECAM1. qRT-PCR showed no significant differences in gene expression of osteogenic markers between basal and osteogenic media for both 3D construct and monolayers.

However when comparing 3D constructs to monolayers: COL1A1 showed a significantly lower expression (p< 0.05) in 3D compared to 2D at 2 weeks in both culture conditions, and this pattern was reversed after 4 weeks. ALPL was significantly lower in 3D constructs at 2 weeks under both conditions (p<0.01), and was significantly higher in basal conditions at 4 weeks (p<0.05). RUNX2 showed higher expression in 3D constructs at all time points and under both conditions while OC showed lower expression in 3D constructs at 2 weeks and higher expression at 4 weeks under both conditions. For the angiogenic markers, 3D constructs under osteogenic conditions showed an increase of expression in VEGFR2 and PECAM1 at 2 weeks followed by a decrease at week 4, while CD34 expression was undetected in 3D constructs at all times and under both sets of culture conditions. The expression of VEGFR2 and PECAM 1 under both conditions and at both time points was greater in 3D constructs compared to monolayers. After 8 weeks, the in vivo retrieved constructs showed no signs of inflammatory reactions. Immunohistology confirmed positive staining of osteogenic and angiogenic markers in 3D constructs from both in vitro and in vivo experiments with a greater staining intensity seen in the in vivo constructs. Furthermore, the in vivo constructs showed more intense sirius red staining and higher intensity of immunostaining using antibodies to type 1 collagen, with higher calcification as indicated by alizarin red staining.

In conclusion, this study indicated that a combination of HDPSCs and Bioglass¯ scaffolds has potential to provide a suitable microenvironment for angiogenic and osteogenic differentiation of HDPSCs which is essential for bone regeneration in preclinical and/or clinical applications.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 29 - 29
1 May 2012
Zou H Brookes S Lyngstadaas S Boccaccini A Tsiridis E Seedhom B Yang X
Full Access

Objective

Human bone marrow stromal cells (HBMSCs) are multipotent and can form bone, cartilage or other tissues under different inductive conditions. The aim of this study was to investigate the effects of enamel matrix derivative (EMD) on the growth and osteogenic differentiation of HBMSCs.

Methods

HBMSCs were cultured in monolayer with EMD (1, 10, 50,100, 250μg/ml) in aMEM supplemented with 2% FBS for 3 days. Cells cultured in aMEM supplemented with 2% FBS (basal medium) served as the control group. Double-stranded DNA was quantified by PicoGreen assay. Quantitative RT-PCR was performed to determine the expression levels of RUNX2, osteopontin (OPN) and osteocalcin (OCN), dentin matrix protein1 (DMP1) and dentin sialophosphoprotein (DSPP) at different time points (day 0, 5 and 10) when exposed to 10μg/ml EMD or basal medium. Alkaline phosphatase specific activity (ALPSA) was determined after 5 and 10 days culture. Mineral deposition (as calcium) was visualised using Alizarin Red staining.