Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 134 - 134
1 May 2016
Flohr M Upmann C Halasch C Bloemer W Streicher R
Full Access

Introduction

Realistic in-vivo loads on knee implants from telemetric analyses were recently published. Impacting an implant, especially a ceramic one, will produce high peak stresses within the component. Data for loads occurring during implantation of a knee implant are scarce. To ensure a safe impaction of ceramic tibial trays the stresses caused by it need to be known.

Materials and Methods

Impaction testing including force measurements (using Kistler piezo load cell 9351B) was performed on a ceramic tibial tray. The same test was simulated by computational analysis using FEM (Finite-Element-Method). Because the forces measured and those calculated by FEM were significantly different, an in vitro impaction study was performed to obtain realistic loads for a ceramic tibial tray. A surgeon was asked to perform heavy hammer blows which may occur during implantation. Using a high speed camera (phantom V7.2) the velocity of the hammer at the time of impaction was determined. Using this parameter instrumented ceramic tibial trays (BPK-S Knee, P. Brehm) were implanted into a biomechanical Sawbones® model. Linear strain gauges were attached to the four fins of the tibial tray as these are the regions of highest stresses. Simulating the surgeon's highest impacts measurements were conducted at a frequency of 1 MHz. The identical hammer was used in this in vitro study and the velocity of the hammer was measured by using the same high speed camera. To investigate the damping effect of bone cement Palacos®R bone cement was used. Only worst-case impacts within the range achieved by the surgeon were applied to evaluate the stress distribution within the ceramic tibial tray.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 223 - 223
1 Jul 2014
Grupp T Kabir K Fritz B Schwiesau J Bloemer W Jansson V
Full Access

Summary Statement

To evaluate carbon-fiber-reinforced PEEK as alternative biomaterial for total disc arthroplasty a closed loop between biotribology (in vitro), application of sterile particle suspensions in the epidural space of rabbits and biological response in vivo was established.

Introduction

To prevent adjacent level degeneration in the cervical spine, total disc arthroplasty (TDA-C) remains an interesting surgical procedure for degenerative disc disease. Short- or midterm complications are migration, impaired post-operative neurological assessment due to artefacts in x-ray and MRI diagnosis and substantial rates of heterotopic ossification. The idea was to create a TDA-C design based on a polymer-on-polymer articulation to overcome these limitations of the clinically established metal-on-polyethylene designs. The objective of our study was to characterise the biotribological behaviour of an experimental cervical disc replacement made out of carbon-fiber-reinforced (CFR) PEEK and evaluate the biological response of particulate wear debris in the epidural space in vivo.