Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 9 - 9
1 Jul 2020
Vendittoli P Blakeney W Kiss M Riviere C Puliero B Beaulieu Y
Full Access

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) may introduce significant anatomic modifications, as it is known that few patients have neutral femoral, tibial or overall lower limb mechanical axes.

A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. MA tibial and femoral bone resections were simulated. Femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Medial-lateral (DML) and flexion-extension (DFE) gap differences were calculated.

Extension space ML imbalances (3mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances (5mm) were present in up to 8% of varus and 19% of valgus knees. For the flexion space DML, higher imbalance rates were created by the TEA technique (p < 0 .001). In valgus knees, TEA resulted in a DML in flexion of 5 mm in 42%, compared to 7% for PC. In varus knees both techniques performed better. When all the differences between DML and DFE are considered together, using TEA there were 18% of valgus knees and 49% of varus knees with < 3 mm imbalances throughout, and using PC 32% of valgus knees and 64% of varus knees.

Significant anatomic modifications with related ML or FE gap imbalances are created using MA for TKA. Using MA techniques, PC creates less imbalances than TEA. Some of these imbalances may not be correctable by the surgeon and may explain post-operative TKA instability. Current imaging technology could predict preoperatively these intrinsic imitations of MA. Other alignment techniques that better reproduce knee anatomies should be explored.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 10 - 10
1 Jul 2020
Vendittoli P Puliero B Blakeney W Beaulieu Y
Full Access

Assessing patients' functional outcomes following total hip arthroplasty with traditional scoring systems is limited by their ceiling effects. The Forgotten Joint Score (FJS) has been suggested as a more discriminating option. The actual score in the FJS which constitutes a “forgotten joint”, however, has not been defined. The emerging concept of joint perception led to the development of the Patient's Joint Perception question (PJP) to assess the patient's opinion of their prosthetic joint.

Two hundred fifty-seven THAs were assessed at a mean of 68 months follow-up (range 57–79). Outcomes included the WOMAC, FJS and the PJP. Correlation of the scores as well as the ceiling effects were analysed

The mean FJS was 88.5 (range 27.1–100). PJP was correlated with the FJS and WOMAC (Spearman's rho: −0.510 and 0.465 respectively). Fifty-two percent of the patients felt their hip as a natural joint (FJS CI 95% 93.3–96), 24.1% as an artificial joint with no restriction (FJS CI 95% 83.1–90.5), and 23.3% as an artificial joint with minor restrictions (FJS CI 95% 73.8–82.2). Only 0.8% had major restrictions and none reported a non-functional joint. The ceiling effect was high with both the WOMAC and FJS, with 27.2% and 31.9%. In addition, 28.6% of the patients had a WOMAC >10 and 23.4% a FJS of < 9 0 while reporting having a natural hip. Furthermore, 21.5% with a perfect WOMAC or 21.9% with a perfect FJS, reported having an artificial joint with or without limitation.

A forgotten hip perception corresponds to a FJS >93. In 20–30% of the cases, the WOMAC and FJS failed to identify the forgotten joint, or reached the maximum score when the patients did not feel their hip was natural. The PJP is a simple and reliable tool that enables identification of patients that feel their hip is natural.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 11 - 11
1 Jul 2020
Vendittoli P Clément J Blakeney W Hagemeister N Desmeules F Mezghani N Beaulieu Y
Full Access

For many years, achieving a neutral coronal Hip-Knee-Ankle angle (HKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). Lower limb HKA is influenced by the acquisition conditions, and static HKA (sHKA) may not be representative of the dynamic loading that occurs during gait. The primary aim of the study was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary aim was to document to what degree the dHKA changes throughout gait.

We analysed the 3-D knee kinematics during gait of a cohort of 90 healthy individuals (165 knees) with the KneeKG™ system. dHKA was calculated and compared with sHKA values. Knees were considered “Stable” if the dHKA remained positive or negative – i.e. in valgus or varus – for greater than 95% of the corresponding phase and “Changer” otherwise. Patient characteristics of the Stable and Changer knees were compared to find contributing factors.

The dHKA absolute variation during gait was 10.9±5.3° [2 .4° – 28.3°] for the whole cohort. The variation was greater for the varus knees (10.3±4.8° [2.4° – 26.3°]), than for the valgus knees (12.8±6.1° [2.9° – 28.3°], p=0.008). We found a low to moderate correlation (r = 0.266 to 0.553, p < 0 .001) between sHKA and the dHKA values for varus knees and no correlation valgus knees. Twenty two percent (36/165) of the knees demonstrated a switch in the dHKA (Changer). Proportion of Changer knees was 15% for varus sHKA versus 39% for valgus sHKA (p < 0.001).

Lower limb radiographic measures of coronal alignment have limited value for predicting dynamic measures of alignment during gait.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 54 - 54
1 Jul 2020
Vendittoli P Blakeney W Kiss M Puliero B Beaulieu Y
Full Access

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduces significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimise these issues and improve TKA clinical results.

A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. rKA tibial and femoral bone resections were simulated. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and, a resulting HKA within ± 3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with MA results. With the MA technique, femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC).

Extension space ML imbalances (>/=3mm) occurred in 33% of TKA with MA technique versus 8% of the knees with rKA (p /=5mm) were present in up to 11% of MA knees versus 1% rKA (p < 0 .001). Using the MA technique, for the flexion space ΔML, higher imbalance rates were created by the TEA technique (p < 0 .001). rKA again performed better than both MA techniques using TEA of 3 degrees PC techniques (p < 0 .001). When all the differences between ΔML and ΔFE are considered together: using TEA there were 40.8% of the knees with < 3 mm imbalances throughout, using PC this was 55.3% and using rKA it was 91.5% of the knees (p < 0 .001).

Significantly less anatomic modifications with related ML or FE gap imbalances are created using rKA versus MA for TKA. Using rKA may help the surgeon to balance a TKA, whilst keeping the alignment within a safe range.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 13 - 13
1 Feb 2020
Clement J Blakeney W Desmeules F Hagemeister N Vendittoli P
Full Access

Background

Achieving a neutral static Hip-Knee-Ankle angle (sHKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). However, recent studies have shown that sHKA seems to have no effect on TKA survivorship. sHKA is not representative of the dynamic loading occurring during gait, unlike the dynamic HKA (dHKA).

Research question

The primary objective was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary objective was to document to what degree the dHKA changes during gait.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 11 - 11
1 Feb 2020
Blakeney W Beaulieu Y Kiss M Vendittoli P
Full Access

Background

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduce significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimize these issues and improve TKA clinical results.

Method

rKA tibial and femoral bone resections were simulated on 1000 knee CT-Scans from a database of patients undergoing TKA. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and; a resulting HKA within ±3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with measured resection MA results.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2020
Vendittoli P Blakeney W Puliero B Beaulieu Y Kiss M
Full Access

INTRODUCTION

Mechanical alignment in TKA introduces significant anatomic modifications for many individuals, which may result in unequal medial-lateral or flexion-extension bone resections. The objective of this study was to calculate bone resection thicknesses and resulting gap sizes, simulating a measured resection mechanical alignment technique for TKA.

METHODS

Measured resection mechanical alignment bone resections were simulated on 1000 consecutive lower limb CT-Scans from patients undergoing TKA. Bone resections were simulated to reproduce the following measured resection mechanical alignment surgical technique. The distal femoral and proximal tibial cuts were perpendicular to the mechanical axis, setting the resection depth at 8mm from the most distal femoral condyle and from the most proximal tibial plateau (Figure 1). If the resection of the contralateral side was <0mm, the resection level was increased such that the minimum resection was 0mm. An 8mm resection thickness was based on an implant size of 10mm (bone +2mm of cartilage). Femoral rotation was aligned with either the trans-epicondylar axis or with 3 degrees of external rotation to the posterior condyles. After simulation of the bone cuts, media-lateral gap difference and flexion-extension gaps difference were calculated. The gap sizes were calculated as the sum of the femoral and tibial bone resections, with a target bone resection of 16mm (+ cartilage corresponding to the implant thickness).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 160 - 160
1 Sep 2012
Blakeney W Khan R Lam L Breidahl W
Full Access

Background

The long-term impact of dividing Piriformis when performing a standard posterior approach to the hip has not been assessed. A less invasive approach in which the tendon is preserved has been described (the Piriformis-sparing minimally invasive [PSMI] approach). With advances in MRI technology it is now possible to image structures in close proximity to metal without artifact. The aim of the study was to compare the MRI features (muscle grade and bulk) of the divided and repaired Piriformis tendon group (by the standard posterior approach) with the preserved tendon group (by the PSMI approach).

Methods

As part of an on-going randomized controlled trial comparing the PSMI approach with the standard posterior approach for total hip replacement, a subgroup of 20 consecutive patients who fulfilled the inclusion criteria were recruited. Patients received preoperative and 3 months and 2 year postoperative MRI scans. Patients and evaluators were blinded to allocation. Outcomes assessed included grade, volume and integrity of Piriformis.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 97 - 97
1 May 2011
Blakeney W Carey-Smith R Underhill M Short B Wood D
Full Access

Introduction: Chondral injuries of the knee are commonly seen at arthroscopy, yet there is no consensus on the most appropriate treatment method. However, untreated cartilage injury predisposes to osteoarthritis contributing to pain and disability. For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient cells for therapeutic intervention. Although recent reports demonstrated the central role of oxygen in the function and differentiation of chondrocytes, little is known of the effect of physiological low oxygen concentrations during the expansion of the cells and whether this alters their chondrogenic capacity.

Methods: Articular mouse chondrocytes were prepared from the distal femoral condyles of adult mice and chondrocytes were liberated by collagenase type II treatment. Cells were cultured in RPMI 1640 media in monolayer under normoxic or hypoxic conditions (5% O2). Chondrogenic potential was subsequently assessed by plating the cells under micromass conditions and glycosaminoglycan deposition was determined by alcian blue staining. Having determined that oxygen tension infiuences murine chondrocyte expansion and differentiation, similar studies were conducted using adult human chondrocytes taken from knee arthroplasty off-cuts, and Aggrecan (ACAN) gene expression was analyzed using real-time quantitative PCR.

Results: Cellular morphology of cells from mouse articular cartilage was improved in hypoxic culture, with a markedly more fibroblastic appearance seen after greater than 2 passages in normoxic conditions. Micromass cultures maintained in hypoxic conditions demonstrated stronger staining with alcian blue, indicating stronger expression of cartilage-associated glycosaminoglycans. Expansions of human chondrocytes under hypoxic conditions led to an ~ 2-fold increase in the expression of ACAN in comparison to cells in normoxic conditions. Differentiation of passage 2 chondrocytes under hypoxic conditions also improved the expression of ACAN when compared to culturing under normoxia. Ten day hypoxic cultures exhibited an ~ 5-fold increase in ACAN expression in comparison to normoxic cultures. Interestingly, ACAN expression normoxic-cultured cells could be increased by > 4-fold by transfer to hypoxic conditions.

Conclusions: In vivo, the chondrocytes are adapted to an avascular hypoxic environment. Accordingly, applying 5% O2 in the expansion phase in the course of cell-based cartilage repair strategies may more closely mimic the normal chondrocyte microenvironment and may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans.