Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 71 - 71
1 May 2016
Justin D Jin S Frandsen C Brammer K Bjursten L Oh S Pratt C
Full Access

Introduction

Recent advances in nano-surface modification technologies are improving osseointegration response between implant materials and surrounding tissue. Living cells have been shown to sense and respond to cues on the nanoscale which in turn direct stem cell differentiation. One commercially practical surface treatment technique of particular promise is the modification of titanium implant surfaces via electrochemical anodization to form arrays of vertically aligned, laterally spaced titanium oxide (TiO2) nanotubes on areas of implants where enhanced implant–to-bone fixation is desired. Foundational work has demonstrated that the TiO2 nanotube surface architecture significantly accelerates osteoblast cell growth, improves bone-forming functionality, and even directs mesenchymal stem cell fate. The initial in vitro osteoblast cell response to such TiO2 nanotube surface treatments and corresponding in vivo rabbit tissue response are evaluated.

Methods

Arrays of 30, 50, 70, 100nm diameter TiO2 nanotubes formed onto titanium surfaces were compared to grit blasted titanium controls in vitro (Figure 1). SEM micrographs of bovine cartilage chondrocytes (BCCs) on the nanotube surfaces were evaluated after 2 hours, 24 hours, and 5 days of culture. Additionally 20 samples each of various nanotube diameters and the non-nanotube treated titanium controls were evaluated after exposure to human mesenchymal stem cell (hMSC) after 2 hours and 24 hours.

The left tibia and right tibia of four rabbits were implanted with disk shaped titanium implants (5.0 mm dia. × 1.5 mm) with and without TiO2 nanotubes. The front side of each implant faced the rabbit tibia bone and the back side of the implant had screw holes for post-in vivo tensile testing. After 4 weeks, the bones with implants were retrieved for mechanical testing and histology analysis.

Comparative osteogenic behavior on metal oxide nanotube surfaces applied to other implant material surface chemistries including ZrO2, Ta, and Ta2O5 were also evaluated along with TiO2 nanotubes formed on a thin films of titanium on the surface of zirconia and CoCr alloy orthopedic implants.