Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 71 - 71
1 Oct 2019
Vail TP Shah RF Bini SA
Full Access

Background

Implant loosening is a common cause of a poor outcome and pain after total knee arthroplasty (TKA). Despite the increase in use of expensive techniques like arthrography, the detection of prosthetic loosening is often unclear pre-operatively, leading to diagnostic uncertainty and extensive workup. The objective of this study was to evaluate the ability of a machine learning (ML) algorithm to diagnose prosthetic loosening from pre-operative radiographs, and to observe what model inputs improve the performance of the model.

Methods

754 patients underwent a first-time revision of a total joint at our institution from 2012–2018. Pre-operative X-Rays (XR) were collected for each patient. AP and lateral X-Rays, in addition to demographic and comorbidity information, were collected for each patient. Each patient was determined to have either loose or fixed prosthetics based on a manual abstraction of the written findings in their operative report, which is considered the gold standard of diagnosing prosthetic loosening. We trained a series of deep convolution neural network (CNN) models to predict if a prosthesis was found to be loose in the operating room from the pre-operative XR. Each XR was pre-processed to segment the bone, implant, and bone-implant interface. A series of CNN models were built using existing, proven CNN architectures and weights optimized to our dataset. We then integrated our best performing model with historical patient data to create a final model and determine the incremental accuracy provided by additional layers of clinical information fed into the model. The models were evaluated by its accuracy, sensitivity and specificity.