Introduction: Surgical training is being greatly affected by the challenges of reduced training opportunities, shortened working hours, and financial pressures. There is thus an increased need for training systems to aid development of psychomotor skills of the surgical trainee. Furthermore, simulation environments can provide a friendlier and less hazardous environment for learning surgical skills. Such simulations may be used to augment training in the operating room (OR) so that trainees acquire key skills in a non-threatening and unhurried environment. Trajectory planning and implementation forms a substantial part of current and future orthopaedic practice. This type of surgery is governed by a basic orthopaedic principle where the placement of a surgical tool at a specific site within a region via a trajectory that is planned from X-ray based 2D images and is governed by 3D anatomical constraints. The accuracy and safety of procedures utilising the basic orthopaedic principle depends on the surgeon’s judgement, experience, ability to integrate images, utilisation of intra-operative X-ray, knowledge of anatomical-biomechanical constraints and eye hand dexterity. With the decrease in training opportunities in OR for the surgical trainee, these skills are developing at a much later stage in training. Several studies have shown a reduction in the number of operations undertaken and a reduction in the level of competence achieved by surgical trainees.
The study is divided into two parts. The initial part of the study involves the use of the conventional CAOSS to train the orthopaedic trainees with no prior exposure of distal locking of femoral nails and the dynamic hip screw. The second part of the study involves the use of modified CAOSS to assess whether the initial training has helped in developing mental navigation skills of using a 2-D image and navigating the drill bit in 3-D space. The scoring system is based on a combination of parameters which include the time taken for centring of the interlocking screw, total exposures taken and the improvement in the position of the tip of the drill bit with each exposure.