The use of robotics in joint arthroplasty was initiated in 1992 with the introduction of the ROBODOC® Surgical Assistant device for planning and active robotic preparation of the femoral canal in THA. From 1993–1996, an FDA trial was undertaken using pin-based fiduciary markers to register the CT to the robot coordinate system. From 2000–2006, a second FDA trial was initiated using a point-to-surface matching “pinless” registration system. Combined, these two studies offer the first long-term follow-up of robot-assisted THA using an active robotic system for preparation of the femoral canal during THA. Due to the support of an open implant architecture, patients were implanted with either the Depuy AML, Howmedica Osteoloc, or Zimmer VerSys FMT. Combining patients from the two studies, 86 THA's were performed in 63 patients using the active robotic system. Of these 63 patients, 7 were confirmed to have died and 5 have been lost to follow-up, 2 declined to participate due to infirmity, 37 are still recruiting, and 12 are currently enrolled (16 hips). Data collected included: Harris Hip Scale, HSQ-12, WOMAC, UCLA Activity Score, VAS Pain Score as well as radiographic analysis. The demographics at follow-up were:Background
Methods
Bony defects per the Paprosky classification were one IIC, two IIIA, and one IIIB. All patients were followed clinically and radiographically.
Previous in vivo studies pertaining to THA performance have focused on the analysis of gait. Unfortunately, higher demand activities have not yet been analyzed. Therefore, the objective of the present study was to determine the in vivo kinematics for THA patients, using fluoroscopy, while they performed four higher demand activities. The 3D in vivo kinematics of 10 THA patients were analyzed during the following activities: pivoting (PI), tying a shoe (SHOE), sitting down (SDOWN) and standing up (SUP) with and without the aid of handrails. Patients were matched for age, height, weight, body mass index, diagnosis and femoral head diameter to control for confounding variables possibly having influence on the hip performance and kinematics of the various activities. The largest amount, incidence and variation of separation (femoral head sliding in the acetabular cup) were achieved during the PI with 1.5mm (SD 1.1) and 9 of 10 (90%) subjects experiencing separation. For the SHOE, SDOWN and SUP activities the average separation values were 1.1, 1.2 and 0.7mm, respectively. Femoral head separation was observed in 8 of 10 subjects (80%) during SHOE, in 9 (90%) during SDOWN, and in only one of 6 (60%) during SUP. In this present study, subjects demonstrated hip separation during the high demand subjects, which could be a concern because these same activities are subjected to higher bearing surface forces. Also, the presence of hip separation leads to reduced contact area between the femoral head and the acetabular cup, possibly leading to higher contact stresses.
Hap Paul was a unique individual. It is appropriate that this award should go a unique paper presented at this year’s ISTA. The name “Hap” comes from his initials Howard A. Paul. He was an outstanding veterinarian, but he was also much more than that. He had an insatiable curiosity combined with a quick mind and a surgeon’s practicality. His first love was research. After graduating from high school in Connecticut, he went to Notre Dame as a swimmer. He graduated with a degree in Microbiology and a strong desire to “cure cancer”. Acting on his dreams, as he always did, he decided to go to Paris to work with one of the pioneers of Interferon research. Never mind that he didn’t have a job and did not know a word of French. Of course he got the job and learned French playing rugby (hence his awful accent and colorful vocabulary). The funding ran out for the Interferon research, but he somehow got a shot at a spot in the veterinary school in Paris. He got married and finished his veterinary training. The veterinary thing worked out, but the marriage didn’t. He returned to the US after 9 years living in France, to attend the UC Davis School of Veterinary Science as a surgical resident in the small animal area. He met his wife, Dr. Wendy Shelton there… but that is another story. I met Hap when I was a new attending orthopaedic surgeon at UC Davis and looking to do some animal modeling of hip replacement revision techniques. He was an imposing figure: six feet four, big curly afro and wire glasses. He dressed like a Frenchman, wore big clogs and carried a purse. Needless to say I was intimidated initially. But, he had great joi de vive and lived up to his name… he was almost always happy. Hip replacement in dogs began in the 1970’s, but was nearly abandoned by the early 1980’s because of infections and “luxations” (dislocations). In order to develop an animal model we had to develop instruments and techniques that incorporated “third generation” cementing techniques. This we did, but Hap took these instruments and began using them clinically on working dogs. He developed quite a reputation for resurrecting hip replacements for dogs in the US and internationally. Hap and I went on to develop dog models for CT-based custom implants and later surgical robotics (eventually leading to the development of Robodoc). Despite our academic interests, both Hap and I went into private practice in the mid 1980’s… separately, of course (he as a veterinary orthpaedic surgeon and I specialized in hip and knee replacements for humans). Our research in surgical robotics took off when we landed a huge grant from IBM. But then the sky fell in when we learned that Hap had developed lymphoma. After surgery, radiation and chemotherapy, he was in remission, but temporarily couldn’t perform surgery due to a peripheral neuropathy attributed to Vincristine. So Hap went to the lab at UC Davis to work directly with the robotics team. He was a slave driver… but a pleasant one. Certainly the basic research behind Robodoc could not have been done without Hap getting lymphoma. Over 5 years (1986–91) we both had a ball working with some of the best minds in robotics and imaging research. We presented our research on CT-based customs and robotics at many international venues, and Hap made many friends… some are in the audience today. He was one of the founders of this organization (ISTA). Hap returned to veterinary practice when he could finally work with his hands again… but this was not for long. Soon our research lead to the founding of Integrated Surgical Services (ISS) in 1991, the makers of Robodoc. Hap agreed to leave his practice to lead the company and I stayed in clinical practice to develop and utilize the device on patients. In 1992, we shocked the world by being the first to use an active robot in human surgery. It looked like the dawning of a new age. (I still believe it is, but it has been a very slow dawn). For Hap, the joy was short-lived. He developed leukemia as a complication of his prior chemotherapy. He died while recovering from a bone marrow transplant on Feb. 10, 1993 at the young age of 44. During his short life he contributed tremendously to the benefit of others by his research and development work. But mostly he inspired others to excel in their endeavors. He was a wonderful guy. And we are all pleased to honor him with the presentation of the Hap Paul Award at each year’s meeting of ISTA.
Genetic defects causing dwarfism occur in approximately 1 in 10 000 live births. There are over 200 types. Another frequent cause of short stature is juvenile rheumatoid arthritis. Most types of dwarfism result in arthrosis of major joints resulting in significant disability. Hip replacement can offer significant improvement in quality of life, but there are inherent difficulties due to size and anatomic variations. Short stature of less than 4 feet 10 inches was defined as dwarfism. Eight patients meeting this criterion underwent either primary or revision total hip replacement, with six being bilateral, resulting in a total of 14 hips for study (six primaries and eight revisions). The diagnoses were: two JRA, two Mucolipdosis III, one Dyastrophic Dwarfism, one Spondyloepiphyseal Dysplasia, one Thalasemia, and one Congenital Rickets. In eight hips a CT-based custom cementless femoral component was used. Average follow-up was nine years (2 – 14). The average Total Harris Hip Score improved from 35 pre-operatively to 66 at last follow-up, with the average Harris Pain Score increasing from 10 to 31 (out of a maximum of 44). Of the six primary hips, two hips in the same patient have been revised for combined acetabular and femoral loosening. Of the eight revision hips, there have been three re-operations: one re-revised for acetabular loosening, one re-revised for late hematogenous infection and one head/liner change for recurrent dislocations. Hip replacement in dwarfs presents a complex technical challenge, but can result in significant improvement in pain, function and quality of life. CT-base custom femoral components are recommended.
Revision total hip arthroplasty, with retention of well fixed femoral and acetabular components and exchange of modular femoral heads and acetabular liners, is seeing increasing usage, primarily for the treatment of osteolysis or recurrent dislocations. The purpose of this study was to determine the dislocation rate after this procedure. From January 1993 to December 2000, 54 patients underwent isolated head and liner exchange performed by two surgeons. These patients have been followed bi-annually with clinical and radiographic evaulation. There were 36 males and 18 females. Diagnoses at the time of revision surgery were recurrent dislocations in 27 and osteolysis in 27. The overall dislocation rate was 11% (6/54). In the 49 non-constrained revisions, a 28 mm diameter femoral head was used in 27 and a 32 mm head in 22. At the time of revision, 60% of the femoral heads were lengthened, 40% were increased in diameter, and 25% were increased in both dimensions. Hooded or later-alised liners were used in 55% of the revisions. Operative stability was documented in all operative notes, and in 85% Ranawat’s sign was used to determine liner placement based on relative component version. The dislocation rate in the non-constrained revisions was 8% (4/49). Two out of five constrained revisions, performed for recurrent dislocations, subsequently dislocated. In this study isolated head and liner revision had a comparable dislocation rate to full revision total hip arthroplasty.
A common finding in acetabular revisions is loss of medial bone stock. Using a standard cementless hemispherical component, alternatives for reconstruction include medialisation of the cup, medial particulate allograft with rim fixation on host bone, or use of a “mega-cup”. A cementless shell that has 6 mm of lateral augmentation is useful in restoring the joint centre while at the same time achieving implant stability and increasing host bone contact without loss of additional bone. From 1991 to 2000, a total of 142 acetabular revisions were performed with the Arthropor TM DP+6 implant (Joint Medical Products/J&
J/DePuy). These patients have been prospectively followed bi-annually with Harris Hip Scores and monitoring of complications and radiographic findings. Average follow-up is 5 years (range 2 to 11 years). Implant survivorship is 100%. There have been seven re-operations: one for infection (debrided), two for femoral revision and four head/liner changes for recurrent dislocations. Dislocation incidence is 7.8%. The average Total Harris Score at 5 years is 74.3, with an average Harris Pain Score of 34.9 (out of a maximum of 44). Radiographic analysis showed frequent zone 3 radiolucent zones. Initial migration of >
2 mm with subsequent stabilisation occurred in 18%. The joint centre was restored to within 5 mm of the contralateral hip in 85% of cases. We have found this type of implant to be efficacious in the more common acetabular revisions where the loss of bone stock is mainly medial/cavitary, with an intact posterior column and small medial segmental defects.