We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants. An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.Aims
Methods
Hip and knee arthroplasty present surgeons with difficult bone loss. In these cases the use of morselized allograft is a well established way of optimizing early implant fixation. In revisions, the surgical field is potentially infected. The use of allograft bone creates a “dead space” in which the immune system has impaired access, and even a small amount of bacteria may therefore theoretically increase the risk of infection. In vivo studies have shown that allograft bone is suitable as a vehicle of local antibiotic delivery. We hypothesized that the allograft bone could be used as a local antibiotic delivery vehicle without impairing the implant fixation, tested by mechanical push-out. Following approval of the Institutional Animal Care and use Committee we implanted a cylindrical (10×6 mm) porous-coated Ti implant in each distal femur of 12 dogs observed for 4 weeks. The implants were surrounded by a circumferential gap of 2.5 mm impacted with a standardized volume of morselized allograft. In the two intervention groups, 0.2ml tobramycin solution of high (800mg/ml) and low (200mg/ml) concentration was added to the allograft, respectively. In the control group 0.2ml saline was added to the allograft. ANOVA-test was applied followed by paired t-test where appropriate. A p-value < 0,05 was considered statistically significant.Introduction
Material and Methods
We hypothesized that topical bisphosphonate (Pamidronate, Mayne Pharma) in combination with rhBMP2 (InductOs, Wyeth) would give increased mechanical implant fixation and increased new bone formation without excessive allograft resorption. We looked at both porous-coated Ti implants and HA-coated implants.
allograft alone (control) allograft + rhBMP2 allograft + pamidronate allograft + rhBMP2 + pamidronate (combination) The observation time was 4 weeks.
The HA implants had less fibrous tissue and more new bone compared to the Ti implants. The fractions of allograft were the same. The rhBMP2 group had more new bone and much less fibrous tissue than the mechanically superior control group. However, there was almost no allograft left in the rhBMP2 group due to extreme resorption. The addition of pamidronate seemed to freeze bone metabolism around the implants. Neither in the pamidronate group nor in the combination group was there anything but minor new bone growth. The allograft was preserved. In the pamidronate group there was a dense, thick fibrous capsule around the implants. This was not the case in the combined rhBMP2-pamidronate group, and is most likely a positive effect of the rhBMP2.
The negative results with rhBMP2 may be due to over dosage, which warrants further preclinical testing. Despite the limitations of this animal study with non-loaded implants, the results encourage extreme caution in adjuvant therapies of arthroplastic surgery.