Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter. The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading. The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking.Introduction and Objective
Materials and Methods
Unstable distal tibia fractures are challenging injuries requiring surgical treatment. Intramedullary nails are frequently used; however, distal fragment fixation problems may arise, leading to delayed healing, malunion or nonunion. Recently, a novel angle-stable locking nail design has been developed that maintains the principle of relative construct stability, but introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction, without the requirement for additional intraoperative procedures. The aim of this study was to investigate the biomechanical competence of a novel angle-stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared to a conventional nail in a human cadaveric model under dynamic loading. Ten pairs of fresh-frozen human cadaveric tibiae with a simulated AO/OTA 42-A3.1 fracture were assigned to 2 groups for reamed intramedullary nailing using either a conventional (non-angle-stable) Expert Tibia Nail with 3 distal screws (Group 1) or the novel Tibia Nail Advanced system with 2 distal angle-stable locking low-profile screws (Group 2). The specimens were biomechanically tested under conditions including quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure of the bone-implant construct, with monitoring by means of motion tracking. Initial axial construct stiffness, although being higher in Group 2, did not significantly differ between the 2 nail systems, p=0.29. In contrast, initial torsional construct stiffness was significantly higher in Group 2 compared to Group 1, p=0.04. Initial nail toggling of the distal tibia fragment in varus and flexion was lower in Group 2 compared to Group 1, being significant in flexion, p=0.91 and p=0.03, respectively. After 5000 cycles, interfragmentary movements in terms of varus, flexion, internal rotation, axial displacement and shear displacement at the fracture site were all lower in Group 2 compared to Group 1, with flexion and shear displacement being significant, p=0.14, p=0.04, p=0.25, p=0.11 and p=0.04, respectively. Cycles to failure until both interfragmentary 5° varus and 5° flexion were significantly higher in Group 2 compared to Group 1, p=0.04. From a biomechanical perspective, the novel angle-stable intramedullary nail concept has the potential of achieving a higher initial axial and torsional relative stability and maintaining it with a better resistance towards loss of reduction under dynamic loading, while reducing the number of distal locking screws, compared to conventional locking in intramedullary nailed unstable distal tibia fractures.
The high risk and the associated high mortality of secondary, contralateral hip fractures [1,2] could justify internal, invasive prophylactic reinforcement of the osteoporotic proximal femur to avoid these injuries in case of a low energy fall. Previous studies have demonstrated high potential of augmentation approaches [3,4,5], but to date there has no ideal solution been found. The development of optimized reinforcement strategies can be aided with validated computer simulation tools that can be used to evaluate new ideas. A validated non-linear finite element (FE) simulation tool was used here to predict the yield and fracture load of twelve osteoporotic or osteopenic proximal femora in sideways fall based on high resolution CT images. Various augmentation strategies using bone cement or novel metal implants were developed, optimized and virtually performed on the bone models. The relative strengthening compared to the non-augmented state was evaluated using case-specific FE analyses. Strengthening effect of the cement-based augmentation was linearly proportional to cement volume and was significantly affected by cement location. With the clinically acceptable 12.6 ± 1.2 ml volume and optimized location of the cement cloud, compared to the non-augmented state, 71 ± 26% (42 – 134%) and 217 ± 166% (83 – 509%) increase in yield force and energy was reached, respectively. These were significantly higher than previously published experimental results using the “central” cement location [5], which could be well predicted by our FE models. The optimized metal implant could provide even higher strengthening effect: 140 ± 39% (76 – 194%) increase in yield force and +357 ± 177% (132 – 691%) increase in yield energy. However, for metal implants, a higher risk of subcapital fractures was indicated. For both cement and metal, the originally weaker bones were strengthened exponentially more compared to the stronger ones. The ideal solution for prophylactic augmentation should provide an appropriate balance between the requirements of being clinically feasible, ethically acceptable and mechanically sufficient. Even with the optimized location, the cement-based approach may not provide enough strengthening effect and adequate reproducibility of the identified optimal cement cloud position may not be achieved clinically. While the metal implant based strategy appears to be able to deliver the required strengthening effect, the ethical acceptance of this more invasive option is questionable. Further development is therefore required to identify the ideal, clinically relevant augmentation strategy. This may involve new cement materials, less invasive metal implants, or a combination of both. The FE simulation approach presented here could help to screen the potential ideas and highlight promising candidates for experimental evaluation.
Aim of this study is to present the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating In this prospective, multi-centre, randomized, controlled, prospective study, a total of 260 patients were randomly assigned, in five European orthopaedic centres, to receive the antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of laboratory tests, wound healing, clinical scores and x-rays were performed at fixed time intervals.Aim
Method
Infection is among the first reasons for failure of orthopedic implants. Various antibacterial coatings for implanted biomaterials are under study, but only few technologies are currently available in the clinical setting. Previous studies showed the in vitro and in vivo efficacy and safety of a fast resorbable (<96 h) hyaluronic and polylactic acid based hydrogel, loaded with antibiotic or antibiofilm agents (DAC®, Novagenit Srl, Mezzolombardo, TN). Aim of this study is to report the results of the largest clinical trial in trauma and orthopedic patients. In this prospective, controlled, study, a total of 184 patients (86 treated with internal osteosinthesis for closed fractures and 98 undergoing cementless total hip or knee joint prosthesis) were randomly assigned in three European orthopaedic centers to receive antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of laboratory tests, wound healing (ASEPSIS score), clinical score (SF-12 score) and x-rays were performed at fixed time intervals. Statistical analysis was performed with Fisher exact test or Student's t test. Significance level was set at p<0.05. The study was approved by the local Ethical Committee and all patients provided a written informed consent. On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two-groups at a mean 12 months follow-up (min: 6, max: 18 months). Four surgical site infections and two delayed union were observed in the control group compared to none in the treated group. No local or systemic side effects, that could be related to DAC hydrogel coating, were noted and no detectable interference with bone healing or osteointegration could be found This is the largest study, with the longest follow-up, reporting on clinical results after the use of a fast-resosrbable anti-bacterial hydrogel coating for orthopaedic and trauma implants. Our results show the safety of the tested coating in different indications; although not statistically significant, the data also show a trend towards surgical site infection reduction, as previously demonstrated in the animal models.
We evaluated this new implant in our series in a prospective, multicenter setting.
The biomechanical effects on facet joints after posterior fusion remain unclear and seem to be responsible for accelerated degeneration. The following biomechanical study was performed to investigate the effects on the pressure and mobility of neighbouring unfused segments after double level T12-L2 posterior stabilization. The experimental study was performed on eighteen fresh, human, cadaveric thoracolumbal spine specimens. The specimens were cleaned and dissected from muscles and fat with care to preserve bone-ligament units intact. In a specially constructed testing machine the data of the segmental pressure and mobility of adjacent segments above and below the fusion were measured before and after double level T12-L2 posterior stabilization with an internal fixator (Universal Spine System) in flexion, extension, lateral bending, and rotation. For measuring the mobility a motion tracker (3Space Fastrak) and for direct evaluation of the pressure a quartz miniature force transducer was used. Also the bone mineral density of the specimens were measured and showed normal values. In flexion and extension Range of Motion (ROM) of the segment above the double level T12-L2 posterior fusion was significantly increased (p<
0,05). In the adjacent segment below the fusion there was no significant increased mobility after fusion for each moment was applied. The pressure did not show any significant difference, but after posterior fusion in flexion and extension the pressure below the posterior fusion (L2/L3) was decreased and above the fusion (T11/T12) increased. There is evidence that the adjacent segment above a double-level T12-L2 posterior fusion becomes more mobile and leads possibly to an accelerated degeneration in the facet joints due to increased stress at this point. Also the posterior fusion seems to change the load distribution in the facets of adjacent segments. These results could be responsible for symptoms like low back pain after spinal surgery.
The new distractable titanium implant (Synex) is designated for replacement of the vertebral body following fracture, posttraumatic kyphosis or tumor. Synex was compared with the “Harms” cage (MOSS, 22x28 mm, stabilising ring) in two test series.
In test series B the bisegmental motion (T12-L2) of 12 spinal specimens were tested in a 3D loading simulator with moments of 0–7.5 Nm for the six directions. After testing the intact spine, we replaced L1 and stabilised with Fixateur interne (USS) or Ventrofix (VFix). Analysis of the range of motion (ROM), elastic zone (EZ) and neutral zone (NZ) for five conditions: 1) Intact specimen, 2) USS+Synex, 3) USS+MOSS, 4) VFix+Synex, 5) VFix+MOSS (randomized order).
Significantly higher stability was noted with USS+Synex for extension, lateral bending, and axial rotation. No differences between Synex and MOSS were observed in combination with VFix. The combined instrumentation (USS) was superior to the anterior one (VFix). The possibility of secondary dislocation, loss of correction, or posttraumatic kyphosis can be decreased using Synex for replacement of the vertebral body, compared with MOSS. A combined anterior-posterior stabilisation provides higher biomechanical stability compared with an anterior construct.