A navigation system is useful tool to evaluate the intraoperative knee kinematics. Rheumatoid arthritis (RA) patients often need to have TKA operation, however, there are few TKA kinematics studies comparing RA and Osteoarthritis (OA) patients. The purpose of this study was to evaluate intraoperative TKA kinematics, and to describe the difference of kinematics between RA and OA patients.Background
Objective
Septic knee arthritis is one of the most serious complications after total knee arthroplasty (TKA), and the effectiveness of its treatment affects the patient's quality of life. In our super-aging society, the frequency of TKA in the elderly, often combined with various comorbidities, is increasing. Careful management should be considerd during the management of septic arthritis after TKA in these patients. To analyze the clinical features and outcomes of septic arthritis after TKA in our institution.Background
Purpose
Wear of ultra-high molecular weight polyethylene (UHMWPE) is a major factor that affects longevity of the total joint replacement. In total hips, cross-linking of polyethylene acetabular cup has been shown highly effective in reducing wear both clinically and experimentally. In TKR, Schmidig 2000 showed 90% reduction of wear rate in 10 Mrad irradiated tibial inserts compared to 3 Mrad irradiated tibial inserts. Thus crosslinking should provide substantial improvement also in the wear resistance of UHMWPE tibial inserts. Our objective was to compare 3 Mrad UHMWPE with 10 Mrad HCLPE in same design but comparing standard kinematics to more severe mal-rotation kinematics. The latter offsets the tibial tray with 15 degrees internal rotation such the central tibial eminencies became involved in the wear process. Our hypothesis was that HCLPE would be more resistant than the standard UHMPE even in the mal-rotation model. The control material was Duracon 3 Mrad UHMWPE. HCLPE was radiation crosslinked to 10 Mrad mater
According to the knee simulator test results in 1970s, the total decrease in thickness of UHMWPE tibial tray in combination with ceramic femoral component [F-Comp] was less than one tenth as that of the combination with metal [ The retrieved TKP was implanted in 1979, and retrieved on January 9th in 2002. This TKP consisted of an alumina ceramic F-Comp and a UHMWPE tray combined with a alumina ceramic tibial component. Observations of the surface of alumina F-Comp and UHMWPE tray were carried out using SEM. Shape of UHMWPE tray was determined three-dimensionally. Comparing the result with original shape based on the product’s plan, liner wear and volumetric wear were calculated. Oxidation index was determined by Fourier transform infrared spectrophotometry. Alumina F-Comp did not have any scratch on the surface by seeing with naked eye. UHMWPE tray had deformation and scratches obviously. The liner wear rate was 37 micrometer/year and volumetric wear rate was 18.8 mm3/year. The oxidation indexes were 0.6 in the unworn area, 1.2 in the worn area and 0.2 in the inner area. SEM observations of the F-Comp demonstrated no scratch or pit. In contrast, many scratches were clearly observed on the UHMWPE tray. However, higher magnification observations did not demonstrate severe wear, which was shown on the wear analysis of a metallic F-Comp. Oxidation degradation is a problem to solve. However, the low wear rate and mild wear pattern demonstrate that ceramic F-Comp reduced UHMWPE wear.