header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 43 - 43
1 Dec 2016
Phillips L Aarvold A Carsen S Alvarez C
Full Access

Forearm deformity is common in Hereditary Multiple Exostoses, for which multiple surgical treatments exist. Acute ulnar lengthening has been described in the literature, though in small numbers and not independent of adjunctive procedures. We hypothesise that acute ulnar lengthening as a primary procedure is safe and effective in correcting forearm deformity.

Seventeen ulnas in 13 patients had acute ulnar lengthening for HME associated forearm deformity, over an eight-year period. Radiographic parameters were assessed and compared preoperatively and postoperatively. Mean follow-up was 27 months. Complications and revisions were noted.

The mean pre-operative ulnar variance, 12.4mm (range 6.1 – 16.5), was significantly reduced post-operatively to a mean 4.6mm (p=<0.00001). A significant acute difference was achieved in carpal slip, (mean change of −2.2mm, p=0.02) but no significant change was seen with regard to radial bowing (p=0.98) or radial articular angle (p=0.74). There were three episodes of recurrence requiring revision. There were no major complications.

Significant radiographic improvements in forearm and wrist alignment were seen with acute ulnar lengthening. Complications were infrequent. Recurrence rates in the skeletally immature patients are comparable to that reported with gradual lengthening techniques. Acute ulnar lengthening for forearm deformity associated with HME, has been demonstrated to be a safe, reproducible and effective surgical procedure.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 93 - 93
1 Dec 2016
Mulpuri K Dobbe A Schaeffer E Miyanji F Alvarez C Cooper A Reilly C
Full Access

Closed reduction and percutaneous pinning has become the most common technique for the treatment of Type III displaced supracondylar humerus fractures in children. The purpose of this study was to evaluate whether the loss of reduction in lateral K wiring is non-inferior to crossed K wiring in this procedure.

A prospective randomised non-inferiority trial was conducted. Patients aged three to seven presenting to the Emergency Department with a diagnosis of Type III supracondylar humerus fracture were eligible for inclusion in the study. Consenting patients were block randomised into one of two groups based on wire configuration (lateral or crossed K wires). Surgical technique and post-operative management were standardised between the two groups. The primary outcome was loss of reduction, measured by the change in Baumann's angle immediately post –operation compared to that at the time of K wire removal at three weeks. Secondary outcome data collected included Flynn's elbow score, the humero-capitellar angle, and evidence of iatrogenic ulnar nerve injury. Data was analysed using a t-test for independent means.

A total of 52 patients were enrolled at baseline with 23 allocated to the lateral pinning group (44%) and 29 to the cross pinning group (56%). Six patients (5 crossed, 1 lateral) received a third wire and one patient (crossed) did not return for x-rays at pin removal and were therefore excluded from analysis. A total of 45 patients were subsequently analysed (22 lateral and 23 crossed). The mean change in Baumann's angle was 1.05 degrees, 95% CI [-0.29, 2.38] for the lateral group and 0.13 degrees, 95% CI [-1.30, 1.56] for the crossed group. There was no significant difference between the groups in change in Baumann's Angle at the time of pin removal (p = 0.18). Two patients in the crossed group developed post-operative iatrogenic ulnar nerve injuries, while none were reported in the lateral group.

Preliminary analysis shows that loss of reduction in Baumann's angle with lateral K wires is not inferior to crossed K wires in the management of Type III supracondylar humerus fractures in children. The results of this study suggest that orthopaedic surgeons who currently use crossed K wires could consider switching to lateral K wires in order to reduce the risk of iatrogenic ulnar nerve injuries without significantly compromising reduction.