In the past it has been widely accepted that bone remodelling of the proximal femur after cementless total hip replacement is a result of the altered mechanical environment. Usually, there is are distribution of the stresses in the bone, and subsequently bone mass, from the metaphysis to the proximal part of the diaphysis. The design rationale for some cementless stems is to transmit load to the proximal femur and thus to preserve the bone mineral content in this area. The aim of the present study was to investigate the relationship between postoperative strain shielding of the proximal femur and the bone remodelling after insertion of two different cementless femoral stems.
Clinical study: In a prospective, randomized study including 80 patients, the same types of stems were inserted and the bone mineral density (BMD) was measured during the first two years postoperatively using DEXA. Then, the pattern of remodelling was compared with the gradient of strain shielding in each of the Gruen zones in the frontal plane. In Gruen zone 7 the relative cortical strain shielding was45% in the femurs with a custom stem and 87% in the femurs with an anatomic stem. In zone 6 the corresponding figures were 2% and 38%, in zone 5 0% and15% and in zone 3 0% and 20%. The DEXA measurements showed a decrease in BMD in zone 7 of 22% and 23% for the two stems, respectively. In the other zones the bone loss was smaller and there was no difference between the stems. In the proximal zones there was a highly significant difference in strain shielding between femurs receiving a customor an anatomic stem. However, there was no difference in the pattern of bone remodelling. The bone remodelling around these two stems does not seem to mirror the gradient of strain shielding.