Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the
Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic
Traditionally sequential medial soft tissue release is performed for balancing in total knee arthroplasty for
Aims. The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a
To compare time dependent functional improvement for patients with medial, respectively lateral knee osteoarthritis (OA) after treatment with opening wedge osteotomy relieving the pressure on the osteoarthritic part of the knee. In all, 49 patients (52 knees) with a mean age of 47 years (31 to 64) underwent high tibial osteotomies (HTO), and 24 patients with a mean age of 48 years (31 to 62) low femoral osteotomies (LFO) with opening wedge technique due to medial, respectively lateral knee OA with malalignment. All osteotomies were stabilized with a Puddu plate and bone grafting performed in the same time period (2000 to 2008). The patients were evaluated by the Knee Injury and Osteoarthritis Outcome Score (KOOS) pre-operatively and at six months, and at one, two, five, and ten years postoperatively. The knee OA was graded according to the Ahlbäck and Kellgren-Lawrence radiological scoring systems.Aims
Methods
Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and varus alignments, and potential planning of partial knee arthroplasty. Methods. We retrospectively reviewed 639 subjects, aged 45 to 79 years, in the Osteoarthritis Initiative (OAI) study, who had symptomatic knees with Kellgren and Lawrence grade 2 to 4. Knees were categorized as neutral, valgus, and
Abstract. Background. Conventional TKR aims for neutral mechanical alignment which may result in a smaller lateral distal femoral condyle resection than the implant thickness. We aim to explore the mismatch between implant thickness and bone resection using 3D planning software used for Patient Specific Instrumentation (PSI) TKR. Methods. This is a retrospective anatomical study from pre-operative MRI 3D models for PSI TKR. Cartilage mapping allowed us to recreate the native anatomy, enabling us to quantify the mismatch between the distal lateral femoral condyle resection and the implant thickness. Results. We modelled 292 knees from PSI TKR performed between 2012 and 2015. There were 225
Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) may introduce significant anatomic modifications, as it is known that few patients have neutral femoral, tibial or overall lower limb mechanical axes. A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. MA tibial and femoral bone resections were simulated. Femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Medial-lateral (DML) and flexion-extension (DFE) gap differences were calculated. Extension space ML imbalances (3mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances (5mm) were present in up to 8% of varus and 19% of valgus knees. For the flexion space DML, higher imbalance rates were created by the TEA technique (p < 0 .001). In valgus knees, TEA resulted in a DML in flexion of 5 mm in 42%, compared to 7% for PC. In
Objectives. Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results. In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone strain at the medial side was highest among all models. Conclusion. Near normal kinematics was observed in KA TKA. However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe
Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation. Methods. Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. Robotic data were recorded. Results. A total of 56 RA-TKAs performed on
Abstract. OBJECTIVE.
Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a
Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft- tissue gap balance in
For many years, achieving a neutral coronal Hip-Knee-Ankle angle (HKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). Lower limb HKA is influenced by the acquisition conditions, and static HKA (sHKA) may not be representative of the dynamic loading that occurs during gait. The primary aim of the study was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary aim was to document to what degree the dHKA changes throughout gait. We analysed the 3-D knee kinematics during gait of a cohort of 90 healthy individuals (165 knees) with the KneeKG™ system. dHKA was calculated and compared with sHKA values. Knees were considered “Stable” if the dHKA remained positive or negative – i.e. in valgus or varus – for greater than 95% of the corresponding phase and “Changer” otherwise. Patient characteristics of the Stable and Changer knees were compared to find contributing factors. The dHKA absolute variation during gait was 10.9±5.3° [2 .4° – 28.3°] for the whole cohort. The variation was greater for the
Introduction. Most of the algorithm available today to balance
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in
Background. Achieving a neutral static Hip-Knee-Ankle angle (sHKA) measured on radiographs has been considered a factor of success for total knee arthroplasty (TKA). However, recent studies have shown that sHKA seems to have no effect on TKA survivorship. sHKA is not representative of the dynamic loading occurring during gait, unlike the dynamic HKA (dHKA). Research question. The primary objective was to see if the sHKA is predictive of the dynamic HKA (dHKA). A secondary objective was to document to what degree the dHKA changes during gait. Methods. We analysed 3D knee kinematics during gait of a cohort of 90 healthy individuals with the KneeKG™ system. dHKA was calculated and compared with sHKA. Knees were considered “Stable” if the dHKA remained in valgus or varus for greater than 95% of the corresponding phase, and “Changer” otherwise. Patient characteristics of the Stable and Changer knees were compared to find associated factors. Results. dHKA absolute variation during gait was 10.9±5.3° for the whole cohort. The variation was less for the
Introduction. The convincible wisdom is that the release of MCL in severe
Introduction:. Varus alignment of the knee is common in patients undergoing unicondylar knee replacement. To measure the geometry and morphology of these knees is to know whether a single unicondylar knee implant design is suitable for all patients, i.e. for patients with varus deformity and those without. The aim of this study was to identify any significant differences between normal and
Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft-tissue gap balance in