Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 73 - 73
19 Aug 2024
Ganz R Blümel S Stadelmann VA Leunig M
Full Access

The Bernese periacetabular osteotomy (PAO) is not indicated for growing hips as it crosses the triradiate cartilage in its posterior branch, and experimental work has shown this can induce substantial deformations, similar to posttraumatic dysplasia, which is observed after pelvis crash injuries in childhood. Upon examination, all injuries in the 19 cases of posttraumatic dysplasia described in literature plus 16 hips of our personal collection took place before the age of 6, which is striking as pelvic injuries in children increase with age. Based on this observation, we started to extend the PAO indication to severe dysplasias in children with open growth plate, initially aged 9 years and older. Following the positive results, it was extended further, our youngest patient being 5 years old. We retrospectively examined radiographic outcomes of 23 hips (20 patients), aged 10.6±1.8 years [range 5.0 – 13.2], operated by us in four centers. Pre- and 3-months postoperative, and the latest FUP radiograph at growth plate closure were measured. We evaluated the acetabular index (AI), lateral center-edge (LCE), ACM-value and compared them with reference values adjusted for age. The age at triradiate cartilage closure was compared with the non-operated side. The follow-up time was 5.4±3.7 years [0.8 - 12.7]. In 5 hips, growth plate closure was delayed by a few months. All angles significantly normalized after PAO (LCE: 14±8° → 38±11°, AI: 20±8° → 7±4°, ACM: 53±5° → 48±4°), with >80% of them severe pathological pre-PAO, none afterwards. Acetabular molding was normal. Only few complications occurred; one had signs of coxarthosis, one sciatic nerve pain, one interfering osteosynthesis material that was removed, one had an additional valgus osteotomy, and all resolved. Based on 20 cases with follow-up until complete triradiate cartilage closure, we believe to have sufficient information to extend the PAO indication to growing hips of 9 years and older


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 140 - 147
1 Feb 2023
Fu Z Zhang Z Deng S Yang J Li B Zhang H Liu J

Aims. Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI. Methods. We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis. Results. At the end of the first cast period, 73 hips (79.3%) had a FTD < 1 mm. Multiple regression analysis showed that FTD (p = 0.011) and immobilization duration (p = 0.028) were associated with complete reduction. At the end of the second cast period, all 92 hips achieved complete reduction. The LACC on initial MRI was inverted in 69 hips (75.0%), partly inverted in 16 hips (17.4%), and everted in seven hips (7.6%). The LACC became everted-congruent in 45 hips (48.9%) and 92 hips (100%) at the end of the first and second cast period, respectively. However, a residual inverted labrum was present in 50/85 hips (58.8%) with an initial inverted or partly inverted LACC. Conclusion. An eccentric reduction can become concentric after complete reduction and LACC remodelling following CR for DDH. Varying immobilization durations were required for achieving complete reduction. A residual inverted labrum was present in more than half of all hips after LACC remodelling. Cite this article: Bone Joint J 2023;105-B(2):140–147


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 53 - 54
1 Mar 2008
Roposch A Wedge J
Full Access

Severe acetabular dysplasia with established dislocation of the hip represents a common problem in cerebral palsy. Once significant dysplasia is present little remodeling of the acetabulum occurs with femoral osteotomies alone. Pelvic osteotomies should address the problem of acetabular deficiency in order to restore optimal coverage of the femoral head. Standard innominate oste-otomies are not recommended for neuromuscular hip dysplasia. To address the lack of postero-lateral coverage in this population, a modified periacetabular osteotomy was performed. Between 1991 and 2000 a total of forty-four patients (fifty-two hips) with total body involvement CP underwent this procedure at a mean age of nine, four yrs. The modification includes only one bicortical cut at the posterior corner at the sciatic notch. The cut extends down to the triradiate cartilage, if present, and through the former site of the triradiate cartilage after closure of the acetabular growth plate in adolescence. Additional procedures included: open reduction, femoral varus osteotomy, and soft tissue releases. Follow-up included a subjective and clinical evaluation. Radiographic assessment included measurements of the migration percentage and acetabular index, evidence of AVN, and premature closure of the triradiate cartilage. The mean follow-up period for these patients was 3.5 years (1.0 to 8,1 yrs) after surgery, and 70% of the patients had reached skeletal maturity at that time. The median acetabular index improved from 30% pre-operatively to 18% at follow-up. The median migration percentage was 71% preoperatively, and zero at follow-up. A re-dislocation occurred in one hip, and a re-subluxation in another. All other hips were stable and well contained at follow-up. There were three hips showing signs of postoperative femoral head defects . Premature closure of the triradiate cartilage was not noted. The care-givers had the impression that the surgery had improved personal care, positioning/transferring, and comfort. This osteotomy reduces the volume of the elongated acetabulum and provides coverage by articular cartilage. It provides coverage particularly at the posterior part of the acetabulum. Compared to other techniques this modified periacetabular osteotomy has only one posterior cortical cut which extends down to the sciatic notch. Since this cut is cortical, the fragment can be mobilized extensively and it allows placement of a graft and a better posterior coverage


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 198 - 203
1 Jan 2021
Min JJ Kwon S Sung KH Lee KM Chung CY Park MS

Aims. Hip displacement, common in patients with cerebral palsy (CP), causes pain and hinders adequate care. Hip reconstructive surgery (HRS) is performed to treat hip displacement; however, only a few studies have quantitatively assessed femoral head sphericity after HRS. The aim of this study was to quantitatively assess improvement in hip sphericity after HRS in patients with CP. Methods. We retrospectively analyzed hip radiographs of patients who had undergone HRS because of CP-associated hip displacement. The pre- and postoperative migration percentage (MP), femoral neck-shaft angle (NSA), and sphericity, as determined by the Mose hip ratio (MHR), age at surgery, Gross Motor Function Classification System level, surgical history including Dega pelvic osteotomy, and triradiate cartilage status were studied. Regression analyses using linear mixed model were performed to identify factors affecting hip sphericity improvement. Results. A total of 108 patients were enrolled. The mean preoperative MP was 58.3% (SD 31.7%), which improved to 9.1% (SD 15.6%) at the last follow-up. NSA and MHR improved from 156.5° (SD 11.5°) and 82.3% (SD 8.6%) to 126.0° (SD 18.5°) and 89.1% (SD 9.0%), respectively. Factors affecting the postoperative MHR were preoperative MP (p = 0.005), immediate postoperative MP (p = 0.032), and history of Dega osteotomy (p = 0.046). Conclusion. We found that hip sphericity improves with HRS. Preoperative MP, reduction quality, and acetabular coverage influence femoral head remodelling. We recommend that surgeons should consider intervention early before hip displacement progresses and that during HRS, definite reduction and coverage of the femoral head should be obtained. Cite this article: Bone Joint J 2021;103-B(1):198–203


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 258 - 258
1 Mar 2003
Roposch A Wedge J
Full Access

Objective: Severe acetabular dysplasia with established dislocation of the hip represents a common problem in cerebral palsy. Once significant dysplasia is present little remodeling of the acetabulum occurs with femoral osteotomies alone. Pelvic osteotomies should address the problem of acetabular deficiency in order to restore optimal coverage of the femoral head. Standard innominate osteotomies are not recommended for neuromus-cular hip dysplasia. To address the lack of postero-lateral coverage in this population, a modified periacetabular osteotomy was performed. Methods: Between 1991 and 2000 a total of 44 patients (52 hips) with total body involvement CP underwent this procedure at a mean age of 9,4 yrs. The modification includes only one bicortical cut at the posterior corner at the sciatic notch. The cut extends down to the trira-diate cartilage, if present, and through the former site of the triradiate cartilage after closure of the acetabu-lar growth plate in adolescence. Additional procedures included: open reduction, femoral varus osteotomy, and soft tissue releases. Follow-up included a subjective and clinical evaluation. Radiographic assessment included measurements of the migration percentage and acetab-ular index, evidence of AVN, and premature closure of the triradiate cartilage. Results: The mean follow-up period for these patients was 3.5 years (1.0 to 8,1 yrs) after surgery, and 70% of the patients had reached skeletal maturity at that time. The median acetabular index improved from 30% pre-operatively to 18% at follow-up. The median migration percentage was 71% preoperatively, and 0 at follow-up. A re-dislocation occurred in 1 hip, and a re-subluxation in another. All other hips were stable and well contained at follow-up. There were 3 hips showing signs of postoperative femoral head defects . Premature closure of the triradiate cartilage was not noted. The caregivers had the impression that the surgery had improved personal care, positioning/transferring, and comfort. Conclusions: This osteotomy reduces the volume of the elongated acetabulum and provides coverage by articular cartilage. It provides coverage particularly at the posterior part of the acetabulum. Compared to other techniques this modified periacetabular osteotomy has only one posterior cortical cut which extends down to the sciatic notch. Since this cut is cortical, the fragment can be mobilized extensively and it allows placement of a graft and a better posterior coverage


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether release, and final conversion to fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at five years that shows two methods of VBT can be employed depending on the skeletal maturity of the patient: GM and ASC. Cite this article: Bone Jt Open 2022;3(2):123–129


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 79 - 79
1 Jan 2018
Maranho D Davila A Novais E Kim Y Millis M
Full Access

Slipped capital femoral epiphysis (SCFE) is associated with a spectrum of proximal femoral deformity and femoroacetabular impingement (FAI). Little attention has been given, however, to the possible effect of SCFE on remaining hip growth. Our observation that some acetabula in hips with SCFE have various dysmorphology led us to evaluate the growth of the hip in our patients with SCFE. We performed an IRB-approved retrospective study of our intramural SCFE database which identified 108 hips with unilateral SCFE, at least 2 years of radiographic followup, and closure of triradiate cartilage, greater trochanter and proximal femoral physis. The contralateral non-SCFE hip was used as control. Average age at presentation was 12.3 y. 49 patients were male, 59 female. Statistically significant differences were noted between SCFE and control hip both at both presentation and last followup(FU): Mean LCEA lower in SCFE hip at presentation by 0.97 degree; increasing to 4.36 degrees at last FU(p<0.0001). No difference noted in mean Tonnis roof angle at presentation, but at last FU SCFE hips had mean roof angle difference of 3.2 degrees higher than control(p<.0001). In some of our SCFE patients, acetabular deformity has impacted treatment. Ongoing studies may clarify risk factors for the development of problematic acetabular deformity associated with SCFE and perhaps allow prevention of secondary acetabular deformity


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 307 - 307
1 Nov 2002
Lehman W Feldman D Scher D Atar D Bazzi J Mohaideen A
Full Access

Purpose: To describe a simple method for performing pelvic osteotomies in children that will obtain appropriate femoral head coverage. Method: The necessary femoral head coverage was preoperatively predicted by assessing the acetabular, Wiberg, and Lequesne angles, and by 3-D CAT scan evaluations of each hip. Postoperative results were evaluated in a similar manner and compared with the preoperative findings. An “almost” percutaneous triple pelvic osteotomy was performed using an adductor incision and a transverse incision. Results: In spite of the theoretical restrictions in this age group to acetabular movement, i.e. rigid triradiate cartilage, stiff symphysis pubis and rigid sacrospinous and sacrotuberous ligaments, adequate coverage of the femoral head was attained with the described technique. Conclusion: If a pelvic osteotomy is being considered to better stabilize a child’s hip due to a condition such as Legg-Calve-Perthes disease, hip dysplasia, a deformed femoral neck secondary to slipped capital femoral epiphysis or femoral head necrosis, the “almost” percutaneous triple osteotomy has a decided advantage over other well described pelvic osteotomies since it is simpler to perform and sufficiently covers the femoral head


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 80 - 80
1 Mar 2010
Prieto AR Carlos JA Torres TE
Full Access

Introduction and Objectives: The aim of this study is to analyze changes seen on X-ray of the acetabular index, Wiberg’s angle, Sharp’s angle and the continuity of Shenton’s line after osteotomy performed by means of the Dega technique in developmental dysplasia of the hip (DDH). Materials and Methods: We retrospectively analyzed 72 histories of children that underwent surgery performed using the Dega technique at the Niño Jesús Hospital over the last 15 years. We measured the rupture of the Shenton line, the acetabular index, Wiberg’s centre-edge angle and Sharp’s acetabular angle preoperatively; and then approximately 1 year after surgery and at the last X-ray control in the medical history. Results: The acetabular index changed from 33° preoperatively to 24° one year after surgery. At the last X-ray control the acetabular index was 23°. Wiberg’s centre-edge angle is normalized by osteotomy, and changed from 6° preoperatively to 20° after surgery. At the last X-ray it was 23°. However, Sharp’s acetabular angle only suffered slight modifications. It changed from 50° to 48° with surgery. Discussion and Conclusions: The Dega osteotomy is an effective technique to provide acetabular coverage in hips suffering from dysplasia before the closure of the triradiate cartilage. Both the acetabular index and Wiberg’s angle vary significantly with surgery, and become normalized in most cases. This correction is stable over time. However, the same cannot be said for Sharp’s acetabular angle which barely changes with osteotomy


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 148 - 148
1 Feb 2004
Cho T Choi I Chung C Yoo W
Full Access

Introduction: In severe Legg-Calve-Perthes (LCPD) disease with subluxated femoral head, the acetabulum sometimes takes a bicompartmental appearance. This study analyzed acetabular pathoanatomy using a 3-D CT program. Materials and Methods: A 3-D CT software program that affords the section of 2-D image in any plane was used to analyze the acetabular pathoanatomy, with specific reference to the morphology of the inner surface of the acetabulum. Thirteen children with the bicompartmental acetabulae (12 LCPD and 1 AVN subsequent to septic hip arthritis) were evaluated. Results: The anterior half of the acetabulum was concentric. The contour of the acetabular margin in the posterior half of the acetabulum consisted of two different arcs – an arc of the iliac acetabulum (superior) and the other arc of the acetabular fossa of the ischium (medial). The junction of these two arcs was located at the triradiate cartilage, which was increased in mediolateral thickness at this point. The osteochondral articular margin of the ischium posterior to the non-articular acetabular fossa was thickened forming a ridge. The mediolateral thickness of the non-articular acetabular fossa was thinner than that of the normal contralateral side. The combination of these focal morphologic changes of the acetabular fossa rendered the bicompartmental appearance on plain AP radiograph of the pelvis. Discussion: The authors conclude that bicompartmentalization of the acetabulum apparently reflects the altered biomechanics of the hip joint due to the subluxated femoral head. The abnormal osteocartilaginous hypertrophy appears to be caused by synovial irritation and an eccentric molding effect of the subluxated femoral head


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 455 - 455
1 Jul 2010
Ozger H Alpan B Sungur M Kochai A Toker B Eralp L
Full Access

In an era where the survival rates of oncologic patients are improving, biologic reconstruction is the treatment of choice, however, it has its complications and fortunately we have the solutions. Biological reconstruction was performed on 52 patients with a mean age of 11.3 (1.5–16) after malignant bone tumor resection in our institution between 1991 and 2008. Patients were followed up for a mean period of 49 months (3–216). Twenty-nine patients were diagnosed with osteosarcoma, 22 with Ewing sarcoma and 1 with adamantinoma. A wide range of vascular and nonvascular autografts, allografts, fibular transposition, bone regeneration and bone recycling techniques were utilised alone or in combination for reconstruction. Crucial anatomical parts (epiphyses, apophyses, triradiate cartilage, glenoid) were preserved in 41 patients while maintaining safe surgical margins. Wound problem was the most common early complication. The most common late complications were nonunion, limb length discrepancy, limitation of range of motion (ROM), deformity, implant or external fixator failure and fibular graft fracture. Local recurrence was seen in only 2 patients. Patients underwent a mean of 0.8 (1–10) additional surgical interventions for treatment of complications. Thirty-one out of 43 lower extremity patients became ambulatory with full weight bearing and near full ROM while 4 died of disease and 2 were disarticulated prior to healing or treating of complications. Six patients with reconstructions around the glenohumeral joint had functional outcomes varying from excellent to poor with defect pseudoarthrosis. Two patients with successful pelvic reconstructions suffered from co-morbidities and disease itself. Implants and fixators, orthoses, physiotherapy and antibiotherapy were used as necessary for treatment of complications. Biologic reconstruction yields good functional outcomes and allows more flexibility while treating complications since it preserves bone stock and epiphyses


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 109 - 109
1 Feb 2003
van Kampen M Grimer RJ Carter SR Tillman RM
Full Access

Between 1982 and 1997, twenty-six children between the age of 2 and 15 (mean age 10. 6 years) underwent proximal femoral replacement. Twenty have survived and all but three have reached skeletal maturity. Sequential radiographs have been reviewed with particular reference to acetabular development and fixation of the prostheses. Initially a cemented acetabular component was inserted, but recently uncemented implants and unipolar femoral heads that exactly fit the acetabulum have been used. In older children the acetabulum develops normally and the components remain well fixed. One of nine children over thirteen years with a cemented acetabulum needed revision for loosening and one suffered recurrent dislocations. In younger children the acetabulum continues to develop at the triradiate cartilage, so a cemented acetabulum grows away from the ischiopubic bar. As the component is fixed proximally, it becomes increasingly vertical and will almost inevitably loosen. In our study six of eight children under 13 years of age with a cemented acetabulum needed revision for loosening. Unipolar replacements in younger children tend to erode the superior acetabular margin. Femoral head cover is difficult to maintain, and of four unipolar implants in children under thirteen, two required acetabular augmentation. Cemented cups may be unsuitable for children under thirteen years but our results are not statistically significant. In this age group, unipolar implants may be more appropriate but they have serious potential complications. In children over thirteen, cemented implants survive longer. The number of uncemented implants in our study is too small to comment on long-term survival


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 309 - 310
1 Mar 2004
Vengust R Iglic VK Iglic A Antolic V
Full Access

Background and Aims: Concentric pressure of the femoral head on acetabulum is the necessary prerequisite for normal hip development. In the case of diminished hip joint area an elevation of hip joint pressure ensues. If this pressure elevation lasts for a long period of time early degenerative changes are proposed to occur. The aim of our study is to substantiate the connection between hip joint pressure and occurrence of hip osteoarthritis in dysplastic hips. Methods: From 1955 to 1965 112 patients were treated non-operatively for hip dysplasia in developmental dysplasia of the hip in Dept. of Orthopaedic Surgery, Ljubljana. Using mathematical model of the hip, peak joint stress was measured in 27 patients, which met the enrolment criteria consisting of: a.) initial rentgenograph taken at least 20 years ago, b.) closed triradiate cartilage and no rentgenographic signs of osteoarthritis at the time of initial radiograph, c.) no neurological deþcit of lower limbs and no operative procedure during follow up period. All hips were re-examined clinically in year 2000. Results: Mean age at the latest follow up was 47 years (35 years to 61 years). Mean time interval between the rentgenograph from which the hip joint stress was measured and clinical examination was 27 years (20 years to 33 years). Signiþcant correlation was found between peak hip joint stress and Harris hip score (p 0.0013). Discussion and conclusions: Our results indicate that occurrence osteoarthritis of the hip could be related to the degree of hip dysplasia at the end of skeletal growth. The correlation between peak hip joint stress and Harris hip score was one order of magnitude larger than the corresponding correlation between CE angle and Harris hip score, which indicates that hip joint stress represents a valuable parameter describing the status of the hip joint


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 598 - 598
1 Oct 2010
Albert LM Boehrensen S
Full Access

Purpose: Coxa magna is well known in Perthes’ disease but a quantitative evaluation of the early, in particular cartilaginous, enlargement of the femoral head and the necessary adaptive changes of the acetabulum (widening and/or growth) does not exist. We would like to present MR-based volumetric data. Methods: We measured the volume of the femoral head and the acetabulum in MRI by means of a software established for the sizing of tumours before therapy and the determination of liver lobe volume prior to transplantation. We evaluated MRI exams in 47 children with Perthes’ disease and 72 normal children from 4 to 9 years and present data of the affected hip in comparison to the unaffected hip and to normal hips. Results:. Femoral head:. On the average the affected head had a volume that was 47% (range 42 – 57%) larger than on the unaffected side and 44 % (range 13 – 59%) larger than in hips of healthy children. Cases with serial exams showed that the volume of the affected head increased in the course of time. Acetabulum:. On the average the acetabular volume was 21% (range 13 to 30%) larger on the affected side than on the unaffected side and 20% (range 10 to 29%) larger than in healthy children. In patients who underwent surgery (pelvic osteotomy, alone or together with intertrochanteric varus osteotomy) the acetabular volume was 24% larger (range 9 – 33%) on the affected side than on the unaffected side. In patients without surgery the acetabular volume was 16% larger (range 10 to 33%) on the affected side. Conclusions:. We found that Perthes’ disease is associated with an average increase of femoral head volume of 47% in comparison to the unaffected side and of 44% in comparison to healthy children. There was an average increase of the acetabular volume of 21% in comparison to the unaffected side and of 20% in comparison to healthy children. These data may allow a better understanding of the disease and a reappraisal of current forms of treatment. Significance: Given a chronic disproportion between the size of the femoral head and the acetabulum therapy should aim at:. Retardation of the (cartilaginous) enlargement of the femoral head. Promotion of widening or growth of the acetabulum. We believe that current conservative modes of treatment are effective through rationale A and B. Operative modalities, in particular pelvic osteotomies and/or intertrochanteric varus osteotomy, seem to be mainly effective through rationale B. By reorientation of the acetabulum and/or the proximal femur they should favour a better distribution of forces through the hip joint allowing for a gradual widening of the acetabulum. In addition, the operative trauma in the vicinity of the triradiate cartilage may have a stimulating effect on acetabular growth


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 28 - 28
1 Mar 2009
Zagra L Corbella M Ceroni RG
Full Access

Background: Acetabular dysplasia is a congenital deformity that leads to hip osteoarthritis. The reason is the abnormal load transfer on the head which causes the cartilage damage and the progressive lateralization of the rotation centre of the head. The reorientation spherical periacetabular osteotomy, introduced by H. Wagner in 1976, has the aim to normalize the acetabular parameters increasing the coverage of the femoral head. The original indication of the author was the correction of the insufficient acetabulum in young adult patients, just after the closure of the triradiate cartilage, in which it is possible a functional adaptation of the osteotomized hip. Materials and Results: This surgical procedure has been performed in the First Division of Galeazzi Orthopedic Institute of Milan Italy, since 1979 (180 cases up today). The hips operated before 1985 were 14. The patients were 10, in 4 cases the operation was bilateral. There were 9 females and 1 male. The average age of the patients at the time of the operation was 19.3 years. All the patients had a DDH without X-ray signs of osteoarthritis and had a mild or absent pain. In 9 cases the isolated periacetabular osteotomy was performed and in 5 cases a femoral varus osteotomy was associated at the same time. The osteotomies were Wagner type I in 12 cases and Wagner type III in 2 cases. We always used a Smith-Petersen approach. The periacetabular osteotomy was made by special spherical chisels of different diameter under X-rays control. The fixation of the osteotomy was made in 8 cases according to the original technique with a special double horn plate fixed by screws to the ileum and in 6 cases only with the help of Kirsches wires, as actually we prefer. 10 cases with a clinical and X-ray follow-up longer than 20 years have been controlled. 4 cases are lost to follow-up. Occurrence and type of pain, walking, limp, range of motion were evaluated. Wiberg CE angle, signs of osteoarthritis and centre of rotation of the head are observed on the X-rays. Discussion: Evaluating the results, natural history of DDH must be considered. The revision of long term results (follow-up longer than 20 years) shows that it is possible to obtain good clinical outcome in the prevention of arthritis and on patients’ symptoms. The indication must be strictly followed: full indication is maintained in dysplasia of the adolescent, indication in the young adult only if some symptoms are present, very rare indication in patients with signs of arthritis and only in very mild cases. As a matter of fact in a group of patients with a shorter follow-up that is not part of this study, in which the indication was extended to Tonnis 1–2 arthritis we had much more bad results and complication. We observed generally worst results with obese patients


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 119 - 120
1 Jul 2002
Djordjevic-Marusic N Vukasinovic Z Slavkovic S
Full Access

We compared the clinical and radiological effects of the Salter and the Chiari pelvic osteotomy on congruent dysplastic adolescent hips with mild symptoms and free of degenerative changes. The Salter innominate osteotomy has a significant role in the surgery of paediatric hips with significant elasticity of triradiate cartilage, while the Chiari procedure is reserved for incongruent dysplasia with mild or moderate arthrosis in adolescents or young adults. Neither of these operative procedures is an ideal indication for congruent dysplastic adolescent hips free of arthrosis. Hypothetically, the residual remodelling potentials of immature congruent dysplastic adolescent hips can be sufficient to overcome the disadvantages of the Salter and the Chiari osteotomy and give good, long-lasting results. The effects of these quite different procedures in two homologous groups were compared. There were 30 hips treated with Chiari and 25 hips corrected by Salter osteotomy. All hips were congruently dysplastic according to the distance between the centres of the femoral head and the acetabulum (Klaue et al., classification). Groups were homologous considering mean age (14.5 years), follow-up period (8.5 years), presence of preoperative pain, Trendelenburg sign, and degenerative changes. Assessment for pain and Trendelenburg sign was made at follow-up. Radiological measurement was made of the central-edge angle of Wiberg (CE), acetabular angle of Sharp (AAS), and the femoral head coverage index of Heyman and Herndon (FHC). Progression of degenerative changes was analysed according to the criteria of Kellgren and Lawrence. At follow-up in the Chiari group, presence of pain was reduced from 54% to 6.6%, and from 35% to 12% in the Salter group. The presence of Trendelenburg sign was reduced 3% in the Chiari group and remained the same in the Salter group. At control, mean values of radiological parameters were normal in both groups (Salter: CE-27.8°, AIS-36.8°, ING-82.8%; Chiari: CE-36.8°; AIS-39.7°; ING-90.8%). Individual analysis showed 16% of dysplastic hips in the Salter group, and none in the Chiari group. Only one hip (4%) had grade 1 arthrosis after Salter osteotomy. There were five grade 1 hips (17%) in the Chiari group and one (3%) grade 2 arthrotic hip. At follow-up (mean 8.5 years) greater reduction of pain was found in the Chiari group than in the Salter group, but the presence of Trendelenburg sign remained almost unchanged in both groups. There was normalisation of the mean values of radiological parameters in both groups, but the Salter osteotomy was unable to correct dysplasia in 16% of the adolescent hips. Progression of degenerative changes was more rapid in the Chiari group


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 209 - 214
1 Feb 2023
Aarvold A Perry DC Mavrotas J Theologis T Katchburian M

Aims

A national screening programme has existed in the UK for the diagnosis of developmental dysplasia of the hip (DDH) since 1969. However, every aspect of screening and treatment remains controversial. Screening programmes throughout the world vary enormously, and in the UK there is significant variation in screening practice and treatment pathways. We report the results of an attempt by the British Society for Children’s Orthopaedic Surgery (BSCOS) to identify a nationwide consensus for the management of DDH in order to unify treatment and suggest an approach for screening.

Methods

A Delphi consensus study was performed among the membership of BSCOS. Statements were generated by a steering group regarding aspects of the management of DDH in children aged under three months, namely screening and surveillance (15 questions), the technique of ultrasound scanning (eight questions), the initiation of treatment (19 questions), care during treatment with a splint (ten questions), and on quality, governance, and research (eight questions). A two-round Delphi process was used and a consensus document was produced at the final meeting of the steering group.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 9 - 9
1 Mar 2006
Dora C
Full Access

Interest on acetabular version arose from unstable developmental dysplastic hips. Initial studies and clinical observations described the dysplastic hip as being excessively anteverted. The advent of computed tomography allowed further detailed analysis of the acetabulum in the axial plane, yet these studies failed to determine conclusively whether or not the dysplastic acetabulum is abnormally anteverted. Much controversy evolved from different methods of measuring and from the fact that a more anteriorly located acetabular deficiency results in excessive anteversion while a more posteriorly located deficiency in retroversion. It remains inconclusive to what extent acetabular dysplasia is due to a mal-orientation of an otherwise normal configured acetabulum or to a deficient acetabulum which is otherwise normally orientated. Furthermore, the acetabular opening spirals gradually from mild anteversion proximally to increasing anteversion distal to it and therefore render its measurement dependent from pelvic inclination and from the level of the transverse CT scan slice. On an orthograde pelvic X-ray, both, pelvic inclination and rotation can be controlled. Therefore, acetabular version is best estimated from the relationship of the anterior and posterior acetabular rim to each other on an orthograde pelvic X-ray. The main hip pathologies, acetabular rim overload and anterior femoro-acetabular impingement, both occur in the superior part of the acetabulum, the acetabular dome, and that’s where version is best measured. We called this version of the acetabular dome. Interest on retroversion of the acetabular dome arose from analysis of complications such as persistent posterior subluxation after acetabular reorienting procedures. They resulted in the hypothesis that the site of acetabular deficiency may vary and be more posteriorly located in some cases resulting in a rather retroverted than anteverted acetabular dome. In fact, retroversion of the acetabular dome was found to be a characteristic feature of specific hip disorders. A review of ten patients with posttraumatic premature closure of the triradiate cartilage before age 5 showed beside a bowed hemipelvis with lateralized and caudalized acetabulum a mean retroversion of the acetabular dome of 27°. A review of 14 patients suffering from proximal femoral focal deficiency with a functional hip joint revealed a mean retroversion of the acetabular dome of 24°. Typically this was accompanied by femoral retrotorsion and coxa vara. Finally, bladder exstrophy, when treated without pelvic osteotomy, typically end up with externally rotated or retroverted acetabula (Sponseller, 1995) Even in DDH, retroversion of the acetabular dome has been shown to be a significant variation as 40 of 232 such acetabula showed to have a retroverted dome (Li, 2003). Furthermore retroversion typically can result from pelvic osteotomy in childhood as 26 from 97 subjects, who underwent either Salter or Le Coeur osteotomy in childhood ended up with retroverted acetabular domes after closure of the pelvic bone growth plates. In the context of neuromuscular or genetic disorders, dysplastic hips also may have retroverted acetabular domes and may additionally be influenced from fixed spine deformities. Finally, retroverted acetabular domes may be found in otherwise non dysplastic hips. The relevance of acetabular retroversion is both technical and clinical: First, it calls for a more individual approach to acetabular dysplasia because presence of retroversion will affect the manner in which corrective osteotomy will be done. Salter-like reorientation maneuvers will result in worsening the pre-existing posterior deficiency or acetabular rim overload and risk continued posterior subluxation or dislocation of a previously reduced hip (Lee, 1991). Second, anterior overcorrection of a primarily retroverted acetabula may necessitate a further intervention to remove bone from the anterior aspect of the acetabulum or anterior part of the femoral head-neck junction due to limited hip flexion (Crockarell 1999, Myers 1999). Third, evidence that the long-term effect of retroversion of the acetabular dome is harmful is increasing: An association between decreased acetabular anteversion and osteoarthritis was found as soon as 1991 (Menke, 1991) and the prevalence of retroversion among patients with idiopathic hip osteoarthritis has been found to be 20% versus 5% among the general population (Giori, 2003). Furthermore, decreased acetabular and femoral anteversion was found to be a major cause of altered rotation, hip pain and osteoarthritis (Tönnis, 1999). A positive impingement test was the key clinical finding (Reynolds,1999). This anterior impingement of the femoral head-neck junction against the border of the prominent anterior acetabular wall which over a long period of time may lead to fatiguing and destruction of the acetabular labrum and the adjacent cartilage is thought to initiate groin pain and early osteoarthritis. Finally, even for total hip replacement, severe retroversion of the acetabular dome will make surgery more difficult


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 775 - 780
1 Jul 2022
Kołodziejczyk K Czubak-Wrzosek M Kwiatkowska M Czubak J

Aims

Developmental dysplasia of the hip (DDH) describes a pathological relationship between the femoral head and acetabulum. Periacetabular osteotomy (PAO) may be used to treat this condition. The aim of this study was to evaluate the results of PAO in adolescents and adults with persistent DDH.

Methods

Patients were divided into four groups: A, adolescents who had not undergone surgery for DDH in childhood (25 hips); B, adolescents who had undergone surgery for DDH in childhood (20 hips); C, adults with DDH who had not undergone previous surgery (80 hips); and D, a control group of patients with healthy hips (70 hips). The radiological evaluation of digital anteroposterior views of hips included the Wiberg angle (centre-edge angle (CEA)), femoral head cover (FHC), medialization, distalization, and the ilioischial angle. Clinical assessment involved the Harris Hip Score (HHS) and gluteal muscle performance assessment.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 350 - 350
1 Nov 2002
Tönnis D
Full Access

In this paper operations are discussed that improve the dysplastic acetabular roof in developmental dislocation of the hip (DDH) of children up to 10 years. In the first year of life acetabular dysplasia can be treated successfully by flexion-abduction splints and plaster casts in „human position“. From the second year on, only slight dysplasias can heal spontaneously or be treated conservatively. Then the steep acetabular roof has to be osteotomized and levered down to a normal angle and coverage to avoid redislocation or residual dysplasia. Different procedures have been described in the course of time. Two osteotomies are chiseling in the anterior to posterior direction. Salters innominate osteotomy levers the whole acetabulum with the lower part of the pelvis in an anterolateral direction around an axis passing through the pubic symphysis and the posterior part of the osteotomy. In Pembertons osteotomy the hinge for turning down the acetabular roof is the last, posterior, transverse cortical segment over the tri-radiate cartilage, short before the sciatic notch. Osteotomies chiseling from lateral in medial direction have been described already by Albee (1915) and Jones (1920). Lance (1925) propagated this technique in Europe. Here the acetabular roof is partially osteotomized in a thickness of 5–7 mm. Only the lateral part of the acetabulum is brought into the horizontal position. Wiberg in 1939 used this technique, but in 1953 he was the first to publish a full osteotomy what Dega called 1973 a transiliac osteotomy. Dega had originally learned the technique of Lance, but in 1963 when he reduced high dislocations after the technique of Colonna, he performed also a full transiliac osteotomy. After the Symposium of Chapchal in Basel 1965 we started in Berlin also with the complete acetabular osteotomy. With the control of an image intensifier the blade of the osteotome is driven toward the posterior rim of the tri-radiate cartilage leaving only a small bony rim above. Anteriorly the blade passes through the ant. inf. iliac spine. Posteriorly it just enters the sciatic notch. Here we check the blade position by direct palpation. The acetabulum is bent down partly in the small rim of bone left and mainly in the triradiate cartilage. Angles up to 50° have been achieved, which you cannot reach by other techniques. In the beginning we have combined after Mittelmeier and Witt this acetabuloplasty with a varus osteotomy of the femur. In our long-time follow-up (Brüning et al. 1988,1990) however, we found in almost 50% a subcapital coxa valga or a so-called head-in-neck-position of the femoral head. Then we avoided varusosteotomies and had good results without it (Pothmann). To keep the acetabular roof in the new position we used first bone wedges from the varus osteotomy, then deproteinized bone wedges from animals, and today deep frozen wedges of human femoral heads of the bone bank, sterilized at 121 degrees C for 20 min. (Ekkernkamp, Katthagen). A firm layer of cortical bone laterally is necessary. Reinvestigations have proven the stability of this material too ( Pothmann). This type of acetabular osteotomy in our and other authors opinion is the best. Salters osteotomy is not as efficient in severe dysplasia. And in older children it produces a decrease in anteversion of the acetabulum, which may limit internal rotation of the hip and cause osteoarthritis if it does not improve. In Pembertons osteotomy one cannot use the image intensifier, which is of great help to perform the osteotomy exactly and also the levering of the acetabulum to the optimal coverage. Our first long-time follow-up of children with additional varus-osteotomies (Brüning et al.) reviewed 90 hip joints in 67 children. The age at operation was in average 3.6 years, the age at follow-up 15 years. Clinical results. 98% of the patients had no pain or only occasional, no limitation of movement and normal or almost normal gait. The Trendelenburg sign was negative in 71% of the cases, grade 1 in 15.5% and grade 3 in 13.5%. Radiological evaluation. The mean value of the AC-angle (acetabular index) preoperatively was 33.8°, postoperatively normal with 16.3°. The acetabular angle of the weightbearing zone was at follow-up 9.7°, which is normal too. At the age of less than 18 years the CE angle of 25,9° was normal too, as well the instability (protrusion) index of Reimers of 12.3 % and the distance femoral head to teardrop figure with 8.8 mm. In our study group of hip dysplasia we introduced a score of normal values of hip measurements and 3 grades of deviation from normal, slightly pathological, severely pathological and extremely. When we counted normal values and slightly pathological ones together as a good result, we found for the different measurements of the acetabulum percentages mainly between 82 and 93 %. Remarkable were two measurements of the femoral neck, the epiphyseal index with only 50 % of normal and slightly pathological angles and the head-neck index with 47.7% respectively. This was due to the head-in-neck position of the femoral neck after varus osteotomy as we have mentioned already. Acetabular coverage is achieved best in transiliac osteotomies up to 10 years. Then, only by triple pelvic osteotomies the acetabulum in total can be redirected to a normal coverage. But this operation is more difficult. Residual dysplasias therefore should be treated as early as possible in the way demonstrated here