In the vast majority of patients, the anatomical and mechanical axes of the tibia in the coronal plane are widely accepted to be equivalent. This philosophy guides the design and placement of orthopaedic implants within the tibia and in both the knee and ankle joints. However, the presence of coronal
Fibular hemimelia is associated with equinovalgus deformity of the ankle and hind foot and antero-medial bowing of tibia. A wedge shaped distal epiphysis of the tibia and tight posterolateral soft tissues play an important role in the pathogenesis of ankle valgus and lateral subluxation of foot. Tethering effect of fibular anlage may contribute to the deformities in the tibia and ankle. Lengthening procedures are associated with progression of these deformities. The purpose of this study is to determine whether Exner Osteotomy and Excision of Fibular anlage will correct the valgus deformity of the ankle and antero-medial bowing of tibia. A bending osteotomy through the distal tibial physis as described by Exner and excision of Fibular Anlage was performed in six limbs in five children (4 boys, 1 girl) with fibular hemimelia. Histology of Excised Fibular anlage was studied under light microscopy. The mean age at the time of surgery was twenty two months (range: 8 months to 5 years). The mean follow-up was two years and two months (13 months to 4 years and 8 months). Full Correction of ankle valgus and
Varus deformity encompasses a wide spectrum of pathology and merits individualised treatment. In most knees there is loss of articular cartilage or bone medially; this is associated with contractures of posteromedial structures of varying rigidity. In addition, there may be significant elongation of lateral ligamentous structures, and associated extra-articular femoral or
The purpose of the study was to evaluate the usefulness of the techniques introduced for correction of the deformities associated with fibular hemimelia. Material. 10 children (6 boys and 4 garils) with affected 11 limbs were analyzed. All presented Achterman-Kalamchi type II fibular hemimelia (absence of the fibula, anterior
This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed.Aims
Methods