Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis
Objectives. The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Methods. Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test. Results. We observed no significant difference in cross-sectional area or in Young’s modulus among the four study groups. In addition, histological sections showed that the BMSCs were aligned well and viable on the tendon slices after two-week culture in groups three and four. Expression levels of several extracellular matrix tendon growth factors, including collagen type I, collagen type III, and matrix metalloproteinase were significantly higher in group four than in group three (p < 0.05). Conclusion. Lateral slits introduced into de-cellularised tendon is a promising method of delivery of BMSCs without compromising cell viability and tendon mechanical properties. In addition, mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro. Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor
Acromioclavicular joint (ACJ) dislocations is a common disorder amongst our population for which numerous techniques have been described. It is thought that by using this novel technique combining a CC and AC repair with a reconstruction will result in high maintenance of anatomical reduction and functional results. 12 consecutive patients ACJ dislocations were included. An open superior clavicular approach is used. Firstly, the CC ligaments are repaired after which a CC reconstruction is performed using a
Recurrent patellar instability is a common problem and there are multiple demographic and pathoanatomic risk factors that predispose patients to dislocating their patella. The most common of these is trochlear dysplasia. In cases of severe trochlear dysplasia associated with patellar instability, a sulcus deepening trochleoplasty combined with a medial patellofemoral ligament reconstruction (MPFLR) may be indicated. Unaddressed trochlear pathology has been associated with failure and poor post-operative outcomes after stabilization. The purpose of this study is to report the clinical outcome of patients having undergone a trochleoplasty and MPFLR for recurrent lateral patellofemoral instability in the setting of high-grade trochlear dysplasia at a mean of 2 years follow-up. A prospectively collected database was used to identify 46 patients (14 bilateral) who underwent a combined primary MPFLR and trochleoplasty for recurrent patellar instability with high-grade trochlear dysplasia between August 2013 and July 2021. A single surgeon performed a thin flap trochleoplasty using a lateral para-patellar approach with lateral retinaculum lengthening in all 60 cases. A tibial tubercle osteotomy (TTO) was performed concomitantly in seven knees (11.7%) and the MPFLR was performed with a gracilis tendon autograft in 22%, an
Complications involving the knee extensor mechanism occur in 1% to 12% of patients following total knee arthroplasty (TKA), and have negative effects on patient outcomes. While multiple reconstruction options have been described for complete disruption of the extensor mechanism, the results in patients with a prior TKA are inferior to those in patients without a TKA, and frequently have required the use of
Introduction. A deficient abductor mechanism leads to significant morbidity and few studies have been published describing methods for reconstruction or repair. This study reports the reconstruction of hip abductor deficiency using human allograft. Methods. All patients were identified as having deficient abductor mechanisms following total hip arthroplasty through radiographic assessment, MRI, clinical examination and intra-operative exploration. All patients underwent hip abductor reconstruction using a variety of human allografts including proximal humeral, tensor fascia lata, quadriceps and patellar tendon. The type of allograft reconstruction used was customized to each patient, all being attached to proximal femur, allograft bone adjacent to host bone, with cerclage wires. If a mid-substance muscle rupture was identified an
Introduction. Chronic ruptures of the quadriceps tendon after total knee arthroplasty (TKA) are rare but are a devastating complication. The objective of this study was to validate the use of fresh frozen total fresh quadriceps
Combined anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) disruptions are uncommon orthopaedic injuries. They are usually caused by high- or low-velocity knee dislocations. Because knee dislocations might spontaneously reduce before initial evaluation, the true incidence is unknown. Dislocation involves injury to multiple ligaments of the knee. Both of the cruciate ligaments are usually disrupted, and they are often combined with a third ligamentous disruption (medial collateral ligament or lateral collateral ligament and/or posterior lateral complex). Associated neurovascular, meniscal, and osteochondral injuries are often present and complicate treatment. Classification Knee dislocations are classified by relating the position of the displaced tibia on the femur; anterior, posterior, medial, lateral, or rotational. Both cruciate ligaments might be disrupted in all these injuries. A rotatory knee dislocation occurs around one of the collateral ligaments (LCL) leading to a combined ACL and PCL injury and a tear of the remaining collateral ligament. Knee dislocations that spontaneously reduce are classified according to the direction of instability. Knee dislocations are classified as acute (<
3 weeks) or chronic (>
3 weeks). Initial management The vascular status of the limb must be determined quickly. The knee should be reduced immediately through gentle traction-countertraction with the patient under anesthesia. After reduction, repeat vascular examination. If the limb remains ischemic, emergent surgical exploration and revascularisation is required. If the initial vascular examination is normal, postreduction a formal angiogram should be done especially if the patient has a high velocity injury, is polytraumatized or have altered mental status. Compartment syndrome, open injury, and irreducible dislocation are other indications for emergent surgery. Definitive management Many authors have noted superior results of surgical treatment of bicruciate injuries when compared to nonsurgical treatment. In most cases early ligament surgery (at the second or third week) seems to produce better results compared to late reconstructions. Still the management of knee dislocations remains controversial. Controversies persist regarding surgical timing, technique, graft selection, and rehabilitation. The goal of operative treatment is to retain knee stability, motion, and function. The most common injury patterns include both cruciate ligaments and either medial collateral ligament (MCL) or lateral collateral ligament (LCL) and/or posterolateral structures. Less commonly both collateral ligaments are disrupted. Our policy has been early (from 7 to 21 days) simultaneous reconstruction of both cruciate ligaments and repairing of grade III LCL and posterolateral structures. Most acute grade III MCL tears are successfully treated with brace treatment when ACL and PCL are reconstructed early. Most cruciate ligament injuries are midsubstance tears that need to be reconstructed with autografts or allografts. Repairs can be done in cases of bony avulsion of cruciate ligaments or grade III collateral ligament or capsular injuries. Bone-patellar tendon-bone (BPTB) autograft has mainly used in our clinics to reconstruct the ACL. In some cases BTPB allograft or hamstring tendon autografts has been used. For PCL reconstruction, BPTB allograft (11 mm in diameter) or Achilles tendon allograft has been used. Intrasubstance grade III tears of the LCL can be repaired (in early state) but may need to be augmented with
Anterior cruciate ligament (ACL) injuries are being seen with increasing frequency in children. Treatment of the ACL deficient knee in skeletally immature patients is controversial. To determine the outcome of anatomic transphyseal ACL reconstruction in tanner stage 1 and 2 patients with open growth plates at a minimum of 2 years after surgery. Between 2007–2008, 16 prepubescent skeletally immature patients underwent anatomic transphyseal ACL reconstruction using soft tissue grafts. All patients were tanner stage 1 and 2 and all had open growth plates. Outcomes were assessed at a minimum of 2 years after surgery and included: limb alignment, limb length, instrumented testing with KT-1000 and International Knee Documentation Committee (IKDC) score. Mean age at the time of surgery was 12 years (8–14). Graft choices included: living-related donor hamstring
Purpose: This study was performed to assess the incidence of generalized ligament laxity in patients undergoing revision ACL reconstruction. Methods and Results: Prospective data was collected for 40 patients undergoing revision ACL reconstruction, between 2004 and 2009 under the care of a single orthopaedic consultant including demographic details, graft used during primary and revision ACL reconstruction and causes of graft failure. Clinical examination was used to assess the ligament laxity using the Beighton score. Laxity is scored on a 0–9 scale. Scores of 4 or above are indicative of generalized ligament laxity. Brighton criteria is used to diagnose Benign Joint Hypermobility Syndrome (BJHS) and use signs and symptoms along with Beighton score. The most common graft used was a quadruple hamstring in 23 patients (57%). The causes of graft failure were trauma in 22 patients (55%), biological in 17 patients (42%) and infection in 1 patient (2.5%). The revision ACL graft was patella tendon in 23 patients (57%),
Aims: This work analyzed the effects of storage by fresh-freezing at −80°C on the histological, structural and biomechanical properties of the human posterior tibial tendon (PTT), used for ACL reconstruction. Methods: Twenty-two PTTs were harvested from eleven donors. For each donor one tendon was frozen at −80°C and thawed in physiologic solution at 37°C, and the other was tested without freezing (control). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and biomechanical analysis were performed. Results: We found the following mean changes in frozen-thawed tendons compared to controls: TEM showed an increase in the mean diameter of collagen fibrils and in fibril non-occupation mean ratio, while the mean number of fibrils decreased; DSC showed a decrease in mean denaturation temperature and denaturation enthalpy. Biomechanical analysis showed a decrease in ultimate load and ultimate stress, an increase in stiffness and a decrease in ultimate strain of tendons. Conclusions: Fresh-freezing brings about significant changes in the biomechanical and structural properties of the human PTT. A high variability exists in the biophysical properties of tendons among individuals and in the effects of storage on tendons. Particular care is required when choosing an
Purpose: The use of allografts for anterior cruciate ligament (ACL) reconstruction has gained increased popularity. The major benefits of allograft for ACL replacement include decreased morbidity, easier patient rehabilitation and include ease of surgical procedure, decreased harvest site morbidity and easier patient rehabilitation. Further, allografts have improved appeal because of better sterilization techniques, improve graft availability and decreased hospital costs.|The objective of this study was to perform mechanical testing on various types of allograft. Specimens for allograft reconstruction of the anterior cruciate ligament included tibialis anterior tendon, tibialis posterior tendon, Achilles tendon and bone patella tendon tissues. Methods: The allografts tested were used for deployment in patients suffering with anterior cruciate ligament disruptions. A total of fifty grafts were analyzed. The breakdown of graft types included 15 tibialis anterior tendon, 15 tibialis posterior tendon, 10 Achilles tendon and 10 bone patella tendon tissues. The test techniques included: cutting the tendons to a set thickness and length. The tendons were then mounted in a cryogrip and frozen with liquid Nitrogen to below zero. They were mounted into a servo-hydraulic testing machine and pre-loaded and pre-conditioned. The specimens were then stretched to failure at a set strain rate. Results: No difference was found between the mechanical/material properties of the various
Purpose: Massive rotator cuff defects are often associated with incapacitating pain and severe functional impairment and pose a difficult management problem. Introduction: Tears of the rotator cuff are a common orthopaedic condition. The surgical treatment for such defects is varied and include simple debridement, “balanced” repair, local musculotendinous transfers, and autograft or
Introduction: Allograft-Prosthesis Composite represents a reliable option for proximal femur replacement after resection for bone tumor. It provides advantages over megaprostheses because of better soft tissue repair and superior abduction strength, quality of gait, hip stability, and load transfer by healed bone rather than prosthetic stem, with potential impact on implant survival. Purpose of this paper was to review details of the surgical technique and results. Methods: A retrospective study of 62 patients who had resection of the proximal femur because of a bone tumor and reconstruction with an Allograft-Prosthesis Composite was undertaken. The basic surgical technique consisted of an uncemented tapered long stem prosthesis (i.e. Wagner or Wagner-type stem) cemented in the allograft and press-fitted in the host bone, achieving bone-bone contact through a transverse osteotomy. Details of the surgical technique included: 1) accurate preoperative planning, canal sizing and implant selection; 2) under-reaming of the proximal 5–10 mm of the host medullary canal, depending upon bone quality and diameter of the selected stem; 3) allograft preparation and prosthesis cementation in the allograft; 4) introduction of the composite implant, pressfitted in host medullary canal, until bone-bone contact is achieved; 5) careful repair of abductors and iliopsoas to corresponding
To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization).Aims
Methods
This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient. Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.Objectives
Methods
The October 2012 Knee Roundup360 looks at: autologous chondrocytes and chondromalacia patellae; drilling the femoral tunnel at ACL reconstruction; whether we repair the radially torn lateral meniscus; factors associated with patellofemoral pain; mechanoreceptors and the allografted ACL; whether high tibial osteotomy can delay the need for knee replacement; return to sport after ACL reconstruction; tissue-engineered cartilage; and the benefits of yoga.