Advertisement for orthosearch.org.uk
Results 1 - 20 of 84
Results per page:
Bone & Joint Research
Vol. 3, Issue 8 | Pages 252 - 261
1 Aug 2014
Tilley JMR Murphy RJ Chaudhury S Czernuszka JT Carr AJ

Objectives . The effects of disease progression and common tendinopathy treatments on the tissue characteristics of human rotator cuff tendons have not previously been evaluated in detail owing to a lack of suitable sampling techniques. This study evaluated the structural characteristics of torn human supraspinatus tendons across the full disease spectrum, and the short-term effects of subacromial corticosteroid injections (SCIs) and subacromial decompression (SAD) surgery on these structural characteristics. . Methods . Samples were collected inter-operatively from supraspinatus tendons containing small, medium, large and massive full thickness tears (n = 33). Using a novel minimally invasive biopsy technique, paired samples were also collected from supraspinatus tendons containing partial thickness tears either before and seven weeks after subacromial SCI (n = 11), or before and seven weeks after SAD surgery (n = 14). Macroscopically normal subscapularis tendons of older patients (n = 5, mean age = 74.6 years) and supraspinatus tendons of younger patients (n = 16, mean age = 23.3) served as controls. Ultra- and micro-structural characteristics were assessed using atomic force microscopy and polarised light microscopy respectively. . Results. Significant structural differences existed between torn and control groups. Differences were identifiable early in the disease spectrum, and increased with increasing tear size. Neither SCI nor SAD surgery altered the structural properties of partially torn tendons seven weeks after treatment. . Conclusions . These findings may suggest the need for early clinical intervention strategies for torn rotator cuff tendons in order to prevent further degeneration of the tissue as tear size increases. Further work is required to establish the long-term abilities of SCI and SAD to prevent, and even reverse, such degeneration. Cite this article: Bone Joint Res 2014;3:252–61


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims. Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Methods. Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs. Results. We identified 49 genes in torn supraspinatus tendons associated with advancing age. Among them, five age-related genes showed DE in lesioned tendons compared to normal tendons. Functional analyses and previous studies have highlighted their specific enrichments in biological functions, such as muscle development (e.g. myosin heavy chain 3 (MYH3)), transcription regulation (e.g. CCAAT enhancer binding brotein delta (CEBPD)), and metal ion homeostasis (e.g. metallothionein 1X (MT1X)). Conclusion. This study uncovered molecular aspects of tendon ageing and their potential links to RCT development, offering insights for targeted interventions. These findings enhance our understanding of the mechanisms of tendon degeneration, allowing potential strategies to be made for reducing the incidence of RCT. Cite this article: Bone Joint Res 2024;13(9):474–484


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 77 - 77
1 Mar 2008
Himori K Uhthoff H Trudel G Poitras P Matsumoto F Sano H
Full Access

The purpose of this study was to clarify the effect of delay of the reattachment of the supraspinatus tendon into a bony trough to the strength of the repaired tendon-bone complex. The supraspinatus tendon of rabbits were transected and reattached into bony troughs at the greater tuberosity immediately and six weeks after transection. The tensile strength of the tendon-bone complex, harvested twelve weeks after reattachment, were measured. The tensile strength showed no difference between immediate and delayed reattached shoulders. Six weeks delay of supraspinatus tendon repair seems not to weaken the tensile strength of repaired tendon-bone complex. The purpose of this study was to clarify the effect of timing of surgery on the strength of the supraspinatus tendon-bone complex after the reimplantation of the tendon into a bony trough. In eight rabbits, the supraspinatus tendon was transected and reinserted into a bony trough at the greater tuberosity (early reattachment group). In seven rabbits, the supraspinatus tendon was reinserted six weeks after transection (delayed reattachment group). In both groups, the rabbits were sacrificed twelve weeks after reattachment, and the tensile strength of the tendon-bone complex was measured. The contralateral shoulders served as controls. None of the operated tendons failed at the site of reimplantation. The ratio of tensile strength of the operated tendon-bone complex to the controls showed no difference between two groups (Immediate reattachment group: 79.9± 1 S.E. 16.5%, delayed reattachment group: 80.4± 12.6%, P> 0.05). This is the first experimental study to compare the tensile strength of supraspinatus tendon-bone complex repaired after different time intervals. Stress-shielded tendon & bone tend to decrease their tensile strength. Given the six weeks duration of detachment, a weaker tensile strength of delayed reattachment group was expected than of the early reattachment group. The fact that both groups did not show a difference might be due to the recovery of tensile strength of tendon & bone in twelve weeks after reattachment. Six weeks delay of repair of supraspinatus tendon does not weaken the tensile strength of repaired tendon-bone complex. Fundings This study has been supported in part by a grant from the American Shoulder and Elbow Surgeons


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 271 - 271
1 May 2009
Franceschi F Longo U Ruzzini L Rizzello G Marinozzi A Denaro V
Full Access

Aims: The aim of this study was to analyze the morphological features of the human surgical specimens of normal supraspinatus tendon from patients with rotator cuff tears and glenohumeral instability. Methods: 41 subjects were recruited for the study. 20 subjects (group 1) sustained a rotator cuff tear and proceeded arthroscopic repair of the lesion. 21 subjects (group 2) underwent surgery due to glenohumeral instability. During surgery, under arthroscopic control, a full thickness supraspinatus tendon biopsy was harvested in the middle portion of the tendon. All slices were processed for histological analysis. Results: On surgical specimens of supraspinatus tendon from patients with rotator cuff tears, but not from patients with instability, we found increased preponderance of hyaline degeneration, fibrocartilaginous or chondroid metaplasia, calcification, lipoid degeneration, mucoid or myxoid. Degenerative changes were more evident on the articular side of the rotator cuff. Conclusions: The present study provides a description of the histological architecture of human surgical specimens of normal supraspinatus tendon from patients with rotator cuff tears. Preexisting degenerative change in the supraspinatus tendon seems to be the main cause of rotator cuff tears


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 44 - 45
1 Jan 2003
Reilly P Amis A Wallace A Emery R
Full Access

To quantify the variation in strain between the deep and superficial layers of the supraspinatus tendon, ten cadaveric shoulders were tested on a purpose built rig. Differential Variable Reluctance Transducers (DVRTs) were inserted into the superficial and deep aspects of the tendon spanning the critical zone. DVRTs accurately measured linear displacement and from this strain was calculated. The strain was measured for two aspects of supraspinatus action, abduction from 0 to 120 degrees with a tensile load (100 Newtons) and static load increases at zero abduction (20, 50, 100, 150 and 200 Newtons). After preconditioning, ten sets of results were recorded for each load/position. The hypothesis, there is a statistically significant difference in strain between the superficial/deep supraspinatus tendon during abduction and with static loading, was tested using a one way ANOVA. During abduction a statistically significant difference in strain was measured between the layers of the supraspinatus tendon at thirty degrees (p=0.000428) and this increased with further abduction. Tensile loading increased tendon strain more in the deep layer of the tendon. This was statistically significant at loads greater than 150N (p= 0.007). The variation in properties between the superficial and deep layers of the supraspinatus tendon has been proposed as a cause of differential strain (1). This study confirms statistically different strains between the superficial and deep tendon layers. It is proposed that the resulting shearing effect initiates intratendinous defects and ultimately tears


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 57 - 57
1 Mar 2010
Millar* N Wei A Molloy T Bonar F Murrell G
Full Access

Excessive apoptosis has been found in torn supraspinatus tendon1 and mechanically loaded tendon cells2. Following oxidative and other forms of stress, one family of proteins that is often unregulated are Heat Shock Proteins (HSPs). The purpose of this study was to determine if HSPs were unregulated in human and rat models of tendinopathy and to determine if this was associated with increased expression of regulators of apoptosis (cFLIP, Caspases 3& 8). A running rat supraspinatus tendinopathy overuse model 3 was used with custom microarrays consisting of 5760 rat oligonucleotides in duplicate. Seventeen torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery and evaluated using semiquantative RT-PCR and immunohistochemistry. Rat Microarray: Upregulation of HSP 27 (×3.4) & 70 (×2.5) and cFLIP (×2.2) receptor was noted in degenerative rat supraspinatus tendon subjected to daily treadmill running for 14 days compared to tendons of animals subject to cage activity only. Histological analysis: All torn human supraspinatus tendons exhibited changes consistent with marked tendinopathy. Matched subscapularis tendon showed appearances of moderate-advanced degenerative change. Apoptosis mRNA expression: The expression levels of caspase 3 & 8 and HSPs 27 & 70 were significantly higher in the torn edges of supraspinatus when compared to matched subscapularis tendon and control tendon (p< 0.01). cFLIP showed significantly greater (p< 0.001) expression in matched subscapularis compared to supraspinatus and control tendon. Immunohistochemical analysis: cFLIP, Caspase 3 & 8 and HSP 27 and 70 was confirmed in all samples of torn supraspinatus tendon. Significantly increased immunoactivity of Caspase 3& 8 and HSP 27 & 70 were found in torn supraspinatus (p< 0.001) compared to matched and normal subscapularis. The proteins were localized to tendon cells. The finding of significantly increased levels of Heat Shock Proteins in human and rat models of tendinopathy with the co-expression of other regulators of apoptosis suggests that Heat Shock Proteins play a role in the cascade of stress activated-programmed cell death and degeneration in tendinopathy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 107 - 107
2 Jan 2024
Park H
Full Access

The rotator cuff tendinopathy is one of the most common shoulder problems leading to full-thickness rotator cuff tendon tear and, eventually, to degenerative arthritis. Recent research on rotator cuff tendon degeneration has focused on its relationship to cell death. The types of cell death known to be associated with rotator cuff tendon degeneration are apoptosis, necrosis, and autophagic cell death. The increased incidence of cell death in degenerative tendon tissue may affect the rates of collagen synthesis and repair, possibly weakening tendon tissue and increasing the risk of tendon rupture. The biomolecular mechanisms of the degenerative changes leading to apoptotic cell death in rotator cuff tenofibroblasts have been identified as oxidative-stress-related cascade mechanisms. Furthermore, apoptosis, necrosis, and autophagic cell death are all known to be mediated by oxidative stress, a condition in which ROS (reactive oxygen species) are overproduced. Lower levels of oxidative stress trigger apoptosis; higher levels mediate necrosis. Although the signaltransduction pathway leading to autophagy has not yet been fully established, ROS are known to be essential to autophagy. A neuronal theory regarding rotator cuff degeneration has been developed from the findings that glutamate, a neural transmitter, is present in increased concentrations in tendon tissues with tendinopathy and that it induces rat supraspinatus tendon cell death. Recent studies have reported that hypoxia involved in rotator cuff tendon degeneration. Because antioxidants are known to scavenge for intracellular ROS, some studies have been conducted to determine whether antioxidants can reduce cell death in rotator cuff tendon-origin fibroblasts. The first study reported that an antioxidant has the ability to reduce apoptosis in oxidative-stressed rotator cuff tenofibroblasts. The second study reported that antioxidants have both antiapoptotic effects and antinecrotic effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The third study reported that an antioxidant has antiautophagic-cell-death effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The fourth study reported that glutamate markedly increases cell death in rotator cuff tendonorigin fibroblasts. The glutamate-induced cytotoxic effects were reduced by an antioxidant, demonstrating its cytoprotective effects against glutamate-induced tenofibroblast cell death. The fifth study reported that hypoxia significantly increases intracellular ROS and apoptosis. The hypoxia-induced cytotoxic effects were markedly attenuated by antioxidants, demonstrating their cytoprotective effects against hypoxia-induced tenofibroblast cell death. In conclusion, antioxidants have cytoprotective effects on tenofibroblasts exposed in vitro to an oxidative stressor, a neurotransmitter, or hypoxia. These cytoprotective effects result from antiapoptotic, antinecrotic, and antiautophagic actions involving the inhibition of ROS formation. These findings suggest that antioxidants may have therapeutic potential for rotator cuff tendinopathy. Further studies must be conducted in order to apply these in vitro findings to clinical situations


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 289 - 289
1 May 2009
Millar N Wei A Molloy T Bonar F Murrell G
Full Access

Aim: The purpose of this study was to evaluate the cytokine molecules present in a rat tendinopathy model and in the torn edge of human rotator cuff tendon in an attempt to understand their role in tendon degeneration. Methods: A rat tendon overuse model was used with custom microarrays consisting of 5760 rat oligonucleotide features in duplicate. Seventeen torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from patients undergoing arthroscopic shoulder surgery.Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery.Specimens were analysed for the presence of interleukins 18, 15, 12, 11, 6, 2, macrophage inhibitory factor (MIF), and tumour necrosis factor ƒÑ by semiquantitative RT-PCR and immunohistochemistry. Tendinopathy was assessed on a basic histological scale. Results: Rat Microarray analysis: Upregulation of IL-6, IL-11 and IL18 receptor was noted in the degenerated rat supraspinatus tendon. Downregulation of IL-2 was noted. No other cytokine signal was expressed. Histological analysis: All torn human supraspinatus tendons changes consistent with marked tendinopathy. Matched subscapularis tendon showed appearances of moderate-advanced degenerative change. Cytokine mRNA expression: TNF-£\ mRNA expression was found to be significantly elevated (p< 0.01) in subscapularis tendon compared to torn supraspinatus samples. The expression levels of IL-18, IL-15, IL-6 and MIF was significantly higher in the torn edges of supraspinatus when compared to matched subscapularis tendon and normal control tendon (p< 0.001). Immunohistochemical analysis: Presence of IL-18, IL-15, Il-6, MIF and TNF-£\ was confirmed in all samples of torn supraspinatus tendon. Significantly increased levels of IL-18, IL-15, IL-6 and MIF were found in torn supraspinatus. (p< 0.01) compared to matched and normal subscapularis. Conclusions: Cytokines have been shown to promote the intensive production of reactive O2 metabolites . 1. and are potent agonists of protein kinases . 2. Our finding of significantly increased cytokine levels may suggest that these molecules when expressed during the degenerate and healing phases of tendon injury result in the subsequent production of reactive O2 species and protein kinases. 3. causing tendon damage or failure of the normal reparative process. Our finding of marked tendinopathy in matched subscapularis tendon may also provide a useful human tendinopathy model


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 8 - 8
1 Mar 2010
Bicknell RT Pelegri C Chuinard C Neyton L Boileau P
Full Access

Purpose: Partial rotator cuff tears are a frequent source of shoulder pain. At times, diagnosis is difficult and treatment unsuccessful. Historical treatment has involved open debridement when conservative treatment has failed. The purpose of this study was to evaluate the results of arthroscopic treatment of deep partial thickness tears of the supraspinatus tendon in patients over 40 years and to assess the healing radiographically. Method: Forty-nine patients (mean age: 55 years) underwent treatment of a deep partial thickness tear of the supraspinatus tendon. Exclusion criteria: age < 40 years, associated instability, posterosuperior impingement or previous shoulder surgery. Patients were re-examined with a mean 32 months follow-up. For lesions involving less than 50% of the tendon thickness, an acromioplasty and either a debridement (n=39) or a side-to-side repair (n=3) was performed. For lesions involving greater than 50% of the tendon thickness (n=7), an acromioplasty and a trans-osseous repair was performed after completion of the tear. Twenty patients (41%) had an assessment of tendon healing by CT arthrogram, MRI or MR arthrogram, at a minimum 12 months post-operatively. Results: Results were good or excellent in 90% of patients, and 94% were satisfied. The Constant score improved from 56 to 82 points (p< 0.0001) and the UCLA score improved from 15 to 30 points (p< 0.0001). Of the 31 patients employed preoperatively, three did not return to work; an occupational injury was predictive of a lower Constant score (p=0.02). Four out of 13 (31%) cases involving less than 50% of the tendon thickness healed and all cases (n=7) involving greater than 50% had healed. Conclusion: Patients over 40 years with an isolated deep partial thickness tear of the supraspinatus tendon benefited both subjectively and objectively from arthroscopic intervention. For deep tears involving < 50% of the tendon thickness, resolution of pain and return to work is possible after acromioplasty and debridement. For deeper tears, completion of the tendon and reattachment to the greater tuberosity enables tendon healing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 27 - 27
1 Jan 2017
Chevalier Y Pietschmann M Thorwaechter C Chechik O Adar E Dekel A Mueller P
Full Access

Treatment of massive rotator cuff tears can be challenging. Previous studies with irreparable rotator cuff tears showed good clinical results of tendon healing with the arthroscopic insertion of a protective biodegradable spacer balloon filled with saline solution between the repaired tendon and the acromion [1,2], but so far no scientific evidence has showed how the device alters pressures over the repaired tendon. This biomechanical study investigated the effects of a spacer inserted in the subacromial space on pressures over the repaired rotator cuff tendon in passive motion cycles typical for post-operative rehabilitation routines. Six human cadaveric shoulders were prepared with the humerus cut 15cm below the joint and embedded in a pot, while the scapula fixed at three points on a plate. A rotator cuff tear was simulated and repaired using a suture anchor and a Mason-Allen suture. The specimens were then mounted on a custom-made pneumatic testing rig to induce passive motion cycles of adduction-abduction (90–0°) and flexion-extension (0–40°) with constant glenohumeral and superior loads and tension is exerted on the supraspinatus tendon with weights. A pressure sensor was placed between the supraspinatus tendon and the acromion. After pressure measurements for 15 cycles of each motion type, the InSpace balloon (OrthoSpace, Inc, Israel) was inserted and the specimens tested and pressure measured again for 15 cycles. Statistically significant changes in peak pressures were then measured before and after balloon. Peak pressures were measured near 90 degrees abduction. No statistical differences were observed for internal-external rotation before and after balloon-shaped subacromial spacer was inserted. Mean pressures in abduction-adduction were significantly reduced from 121.7 ± 9.5 MPa to 51.5 ± 1.2 MPa. Peak pressures after repair were 1171.3 ± 99.5 MPa and 1749.6 ± 80.7 MPa in flexion-extension and abduction-adduction motion, respectively, and significantly decreased to 468.7 ± 16.0 MPa and 535.1 ± 27.6 MPa after spacer insertion (p<0.0001). The use of the spacer above the repaired tendon reduced peak pressures and distributed them more widely over the sensor during both abduction-adduction and flexion-extension motions and therefore can reduce the stress on the rotator cuff repair. The InSpace system may reduce the pressure on the repaired tendon, thus potentially protecting the repair. Further studies to investigate this phenomenon are warranted, in particular relating these changes to shoulder kinematics following tear repair and spacer insertion


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 12 - 12
1 Dec 2020
CAPKIN S GULER S OZMANEVRA R
Full Access

Critical shoulder angle (CSA), lateral acromial angle (LAA), and acromion index (AI) are common radiologic parameters used to distinguish between patients with rotator cuff tears (RCT) and those with an intact rotator cuff. This study aims to assess the predictive power of these parameters in degenerative RCT. This retrospective study included data from 92 patients who were divided into two groups: the RCT group, which included 47 patients with degenerative full-thickness supraspinatus tendon tears, and a control group of 45 subjects without tears. CSA, AI, and LAA measurements from standardized true anteroposterior radiographs were independently derived and analyzed by two orthopedic surgeons. Receiver operating characteristic (ROC) analyses were performed to determine the cutoff values. No significant differences were found between patients in the RCT and control groups in age (p = 0.079), gender (p = 0.804), or injury side (p = 0.552). Excellent inter-observer reliability was seen for CSA, LAA, and AI values. Mean CSA (38.1°) and AI (0.72) values were significantly larger in the RCT group than in the control group (34.56° and 0.67°, respectively, p < 0.001) with no significant difference between groups for LAA (RCT, 77.99° vs. control, 79.82°; p = 0.056). ROC analysis yielded an area under the curve (AUC) of 0.815 for CSA with a cutoff value of 37.95°, and CSA was found to be the strongest predictor of the presence of a RCT, followed by AI with an AUC of 0.783 and a cutoff value of 0.705. We conclude that CSA and AI may be useful predictive factors for degenerative RCT in the Turkish population


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 356 - 356
1 Jul 2011
Ditsios K Kapoukranidou D Boutsiadis A Chatzisotiriou A Alpani M Christodoulou A
Full Access

Purpose of this study is to create an experimental model on rats for EMG evaluation of the supraspinatus muscle after traumatic rupture of its tendon. The population of this study consisted of 5 male rats of 300–400g. Under general anaesthesia we proceeded with traumatic rupture of the supraspinatus tendon and exposure of the muscle. The electrode of a stimulator was placed under suprascapular nerve and the supraspinatus tendon was sutured on a transducer for digital record of the produced signal. Initially we found the resting length and the electric intensity for higher muscle contracture. The parameters that were evaluated after single contracture (single twitch) were strength, time to peak, half relaxation time. Furthermore, it was evaluated the strength of tetanic contractures at 10,20,40,80,100 Hz (Stimulation for 350msec each time).Finally it was evaluated the muscle fatigue with stimulation at 40Hz for 250msec and total duration of 3 minutes. Fatigue index was calculated according to the decrease of titanic muscle contracture (Initial value-Final Value/Initial Value x 100). Our results are presented in mean ± sd. The single twitch was 8.2(5.1),the time to peak 0.034(0.02) msec, the half relaxation time 0.028(0.008)msec. The strength of titanic muscle contractures was 5.7msec at 10Hz and 17.7 at 100Hz. Finally the fatigue index was calculated at 48.4. We believe that EMG evaluation of the supraspinatus muscle in rats will help us understanding the pathology of muscle atrophy after rotator cuff tears and possibly the functional restoration after cuff repair


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 9 - 9
1 Mar 2005
de Beer J Pritchard M
Full Access

In this prospective study of partial articular supraspinatus tendon avulsion (PASTA) lesions treated arthroscopically by an ‘all inside’ method, 12 patients (nine men and three women) with a mean age of 31 years (22 to 36) were followed up for a mean of 16 months (8 to 32). The deep partial rotator cuff tears were usually viewed from the glenohumeral joint side. Viewing the subacromial space usually revealed an entirely normal cuff with no sign of subacromial impingement. With the arthro-scope in the glenohumeral joint, the footprint area of the supraspinatus tendon was prepared and one or two anchors, each preloaded with two sutures, were passed through the rotator cuff into the footprint area of the greater tuberosity. The sutures attached to these anchors were passed through the tendon and tied in the subacromial space. The Constant score improved from a preoperative mean of 72 to a postoperative mean of 91. The greatest increase was in power and overhead motion, especially abduction and external rotation. PASTA lesions are difficult to diagnose, even with MRI. The ‘all inside’ method of arthroscopic repair obviates the need to detach intact fibres


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 152 - 152
1 May 2012
Haber M Dolev E Biggs D Appleyard R
Full Access

This study looks at the dynamic tendon-to-bone contact properties of rotator cuff (RC) repairs—comparing single row repairs (SRR) with double row transosseous- equivalent (TOE) repairs. It was postulated that relaxation during, and movement following, the repair would significantly compromise contact properties and therefore, the ability of the tendon healing. Simulated tears were created in the supraspinatus tendon of six cadaveric human shoulders. A SRR was then performed using the OPUS System, creating two horizontal mattress sutures. An I-Scan electronic pressure-sensor (Tekscan, Boston, MA) was placed between the supraspinatus tendon and bone. The arm was then rested for 300secs (relaxation) before being passively moved twice through a range-of-motion (0-90 degrees abduction, 0-45 external and 0-45 internal rotation) and finally returned to neutral. The contact properties were recorded throughout each movement. The procedure was then repeated using two TOE techniques: parallel sutures (TOE-P) and a cross over suture pattern (TOE-C). While peak pressures during the repair were higher in the two TOE repairs, all three methods demonstrated relaxation over 300s such that there was no significant diference in contact pressures at the end of this time. TOE parallel and cross-over repairs demonstrated no significant change in mean TTB contact pressure, force and area during abduction, external rotation and return to neutral, when compared to the 300sec relaxation state. TOE-C demonstrated a higher contact force on internal rotation (+53%). The SRR demonstrated a significant drop in contact force on abduction (−63%), and return to neutral (−43%) and a trend on external rotation (−34%). SRR exhibited no change on internal rotation. There have been very few biomechanical studies with which observe RC repair contact properties dynamically. Relaxation of the repair can be partially reversed. Significant decrease in contact area with SRR during movement occurred, compared to the TOE repairs, which remains unaltered. This is an important consideration when determining postoperative rehabilitation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 88 - 88
1 May 2012
N.L. M A.J. H J.H. R Y. X U.G. F G.A. M I.B. M
Full Access

The cellular mechanisms of tendinopathy remain unclear, particularly with respect to the role of inflammation in early disease. We have previously identified increased levels of inflammatory cytokines in an early human model of tendinopathy and sought to extend these studies to the cellular analysis of tissue. Purpose. To characterise inflammatory cell subtypes in early human tendinopathy we explored the phenotype and quantification of inflammatory cells in torn and control tendon samples. Design. Controlled laboratory study. Methods. Torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from twenty patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery. Tendon biopsies were evaluated immunohistochemically by quantifying the presence of macrophages (CD68 and CD206), T cells (CD3), mast cells (Mast cell tryptase) and vascular endothelium (CD34). Results. Subscapularis tendon biopsies obtained from patients with torn supraspinatus tendon exhibited significantly greater macrophage, mast cell and T cell expression compared to either torn supraspinatus samples or control subscapularis derived tissue (p< 0.01). Inflammatory cell infiltrate correlated inversely (r=0.5, p< 0.01) with rotator cuff tear size, with larger tears correlating with a marked reduction in all cell lineages. There was a modest but significant correlation between mast cells and CD 34 expression (r= 0.4, p< 0.01) in pre-rupture subscapularis tendon. Conclusion. We provide evidence for an inflammatory cell infiltrate in early mild/moderate human supraspinatus tendinopathy. In particular, we demonstrate significant infiltration of mast cells and macrophages suggesting a role for innate immune pathways in the events that mediate early tendinopathy. Further mechanistic studies to evaluate the net contribution and hence therapeutic utlity of these cellular lineages and their downstream processes may reveal novel therapeutic approaches to the management of early tendinopathy


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 81 - 81
1 Mar 2010
Serrano AC Blanco EP Hermoso JH Guix JM
Full Access

Introduction and Objectives: Damage of the supraspinatus tendon (SST) is frequent in persons over 50 years of age. The aim of our study is to assess the degree of satisfaction and shoulder functionality after suture of the SST during open surgery by means of a 11–13 year follow-up. Materials and Methods: Between 1995 and 1997 in our center, by means of open surgery, 45 SST sutures were performed (< 4 cm) with associated acromioplasty. At a minimum of 11 years follow-up we assessed the degree of patient satisfaction and performed the Constant test and the Jobe test. Results: We studied 36 shoulders belonging to 33 patients (6 were lost to follow-up and 3 died). There were 21 women (63.6%) and 12 men (36.4%) in the series. Mean age was 52.3 years (31–64) and the affected shoulder was on the dominant side in 82% of cases (3 were bilateral). Of the 33 patients (36 shoulders) we obtained 21 very good scores (58.3%), 11 good (30.5%), 3 regular (8.3%) and 1 poor (2.7%). Using Constat’s test we obtained a mean score of 74.7 at the end of the process (pain 12.6, activity 18.1, mobility 36.9 and strength 7). We also used the Jobe supraspinatus test to assess patients and obtained negative results in 22 cases (61.1%), positive results in 8 cases (30.5%) and no results in 3 cases (8.3%). Discussion and Conclusions: We were able to see both clinical improvement (subjective and Constant test) and strength in the supraspinatus tendon (Jobe) in 91.7% of cases at 11–13 years of follow-up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 125 - 125
1 Sep 2012
Gerber C Meyer D Nuss K Farshad M
Full Access

Introduction. Following tear of its tendon, the muscle undergoes retraction, atrophy and fatty infiltration. These changes are inevitable and considered irreversible and limit the potential of successful repair of musculotendinous units. It was the purpose of this study to test the hypothesis that administration of anabolic steroids can prevent these muscular changes following experimental supraspinatus tendon release in the rabbit. Methods. The supraspinatus tendon was experimentally released in 20 New Zealand rabbits. Musculotendinous retraction was monitored over a period of 6 weeks. The seven animals in group I had no additional intervention, six animals in group II had local and seven animals in group III had systemic administration of nandrolone deconate during six weeks of retraction. At the time of sacrifice, in-vivo muscle performance as well as radiologic and histologic muscle changes were investigated. Results. Supraspinatus retraction was significantly higher in group I (1.8 ± 0.2cm) than in group II (1.5 ± 0.3cm, p = 0.044) or III (1.2 ± 0.3cm, p = 0.001). The reduction in radiological cross sectional area, as a measure for atrophy, was significant in groups I (p = 0.013) and II (p = 0.030) and insignificant in group III (p = 0.149). Histologically, there was no fatty infiltration in the treated groups II (p = 1.000) and III (p = 0.812), but in the untreated group I (p = 0.0312). The work of the respective muscle during one standardized contraction with supramaximal stimulation decreased markedly in groups I (p = 0.056) and II (p = 0.0528), and also but less in group III (p = 0.23). Conclusion. This is the first documentation of prevention of important muscle alterations after chronic retraction of the musculotendinous unit caused by rotator cuff tear. Nandrolone deconate administration in the post tendon release phase prevented fatty infiltration of the supraspinatus muscle and reduced functional muscle impairment caused by myo-tendinous retraction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 466 - 466
1 Sep 2012
Ditsios K Kapoukranidou D Boutsiadis A Chatzisotiriou A Albani M Christodoulou A
Full Access

Purpose of this study is to create an experimental model of electrophysologic evaluation of the supraspinatus muscle on rats, after traumatic rupture of its tendon. The population of this study consisted of 10 male Sprague Dawley rats weighting 300–400g. Under general anaesthesia we proceeded with traumatic rupture of the supraspinatus tendon and exposure of the muscle. The scapula was immobilized, and the supraspinatus tendon was attached to a force transducer using a 3–0 silk thread. A dissection was performed in order to identify the suprascapular nerve, which was then stimulated with a silver electrode. Stimulations were produced by a stimulator (Digitimer Stimulator DS9A) and were controlled by a programmer (Digitimer D4030). Fiber length was adjusted until a single stimulus pulse elicited maximum force during a twitch under isometric conditions. Rectangular pulses of 0.5 ms duration were applied to elicit twitch contractions. During the recordings, muscles were rinsed with Krebs solution of approximately 37 8C (pH 7.2–7.4) and aerated with a mixture of 95% O2 and 5% CO2. The output from the transducer was amplified and recorded on a digital interface (CED). The following parameters were measured at room temperature (20–21 8C): single twitch tension; time to peak; half relaxation time; tetanic tensions at 10, 20, 40, 80 and 100 Hz; and fatigue index, which was evaluated using a protocol of low frequency (40 Hz) tetanic contraction, during 250 ms in a cycle of 1 s, for a total time of 180 s. The fatigue index value was then calculated by the formula [fatigue index=(initial tetanic tension − end tetanic tension) ∗ 100/(initial tetanic tension)]. In the end, the transducer was calibrated with standard weights and tensions were converted to grams. The mean single twitch was 8.2, the time to peak 0.034 msec and the half relaxation time 0.028 msec. The strength of titanic muscle contractures was 5.7 msec at 10Hz and 17.7 at 100Hz. Finally, the fatigue index was calculated at 48.4. We believe that electrophysiologic evaluation of the supraspinatus muscle in rats will help us understanding the pathology of muscle atrophy after rotator cuff tears and possibly the functional restoration after cuff repair