Advertisement for orthosearch.org.uk
Results 1 - 20 of 64
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 27 - 27
1 Aug 2020
Abdic S Athwal G Wittman T Walch G Raiss P
Full Access

The use of shorter humeral stems in reverse shoulder arthroplasty has been reported as safe and effective. Shorter stems are purported to be bone preserving, easy to revise, and have reduced surgical time. However, a frequent radiographic finding with the use of uncemented short stems is stress shielding. Smaller stem diameters reduce stress shielding, however, carry the risk of varus or valgus malalignment in the metadiaphyseal region of the proximal humerus. The aim of this retrospective radiographic study was to measure the true post-operative neck-shaft (N-S) angle of a curved short stem with a recommended implantation angle of 145°. True anteroposterior radiographs of patients who received RTSA using an Ascend Flex short stem at three specialized shoulder centres (London, ON, Canada, Lyon, France, Munich, Germany) were reviewed. Radiographs that showed the uncemented stem and humeral tray in orthogonal view without rotation were included. Sixteen patients with proximal humeral fractures or revision surgeries were excluded. This yielded a cohort of 124 implant cases for analysis (122 patients, 42 male, 80 female) at a mean age of 74 years (range, 48 – 91 years). The indications for RTSA were rotator cuff deficient shoulders (cuff tear arthropathy, massive cuff tears, osteoarthritis with cuff insufficiency) in 78 patients (63%), primary osteoarthritis in 41 (33%), and rheumatoid arthritis in 5 (4%). The humeral component longitudinal axis was measured in degrees and defined as neutral if the value fell within ±5° of the humeral axis. Angle values >5° and < 5 ° were defined as valgus and varus, respectively. The filling-ratio of the implant within the humeral shaft was measured at the level of the metaphysis (FRmet) and diaphysis (FRdia). Measurements were conducted by two independent examiners (SA and TW). To test for conformity of observers, the intraclass correlation coefficient (ICC) was calculated. The inter- and intra-observer reliability was excellent (ICC = 0.965, 95% confidence interval [CI], 0.911– 0.986). The average difference between the humeral shaft axis and the humeral component longitudinal axis was 3.8° ± 2.8° (range, 0.2° – 13.2°) corresponding to a true mean N-S angle of 149° ± 3° in valgus. Stem axis was neutral in 70% (n=90) of implants. Of the 34 malaligned implants, 82% (n=28) were in valgus (mean N-S angle 153° ± 2°) and 18% (n=6) in varus position (mean N-S angle 139° ± 1°). The average FRmet and FRdiawere 0.68 ± 0.11 and 0.72 ± 0.11, respectively. No association was found between stem diameter and filling ratios (FRmet, FRdia) or cortical contact with the stem (r = 0.39). Operative technique and implant design affect the ultimate positioning of the implant in the proximal humerus. This study has shown, that in uncemented short stem implants, neutral axial alignment was achieved in 70% of cases, while the majority of malaligned humeral components (86%) were implanted in valgus, corresponding to a greater than 145° neck shaft angle of the implant. It is important for surgeons to understand that axial malalignment of a short stem implant does influence the true neck shaft angle


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 61 - 61
1 Feb 2020
LaCour M Nachtrab J Ta M Komistek R
Full Access

Introduction. Traditionally, conventional radiographs of the hip are used to assist surgeons during the preoperative planning process, and these processes generally involve two-dimensional X-ray images with implant templates. Unfortunately, while this technique has been used for many years, it is very manual and can lead to inaccurate fits, such as “good” fits in the frontal view but misalignment in the sagittal view. In order to overcome such shortcomings, it is necessary to fully describe the morphology of the femur in three dimensions, therefore allowing the surgeon to successfully view and fit the components from all possible angles. Objective. The objective of this study was to efficiently describe the morphology of the proximal femur based on existing anatomical landmarks for use in surgical planning and/or forward solution modeling. Methods. Seven parameters are needed to fully define femoral morphology: head diameter, head center, neck shaft axis, femoral canal, proximal shaft axis, offset, and neck shaft angle. A previous algorithm has been developed in-house to automatically locate anatomical landmarks of patient specific bone models. Once the bone model has been aligned and scaled based on these landmarks, the femoral head diameter and center are calculated by iteratively fitting a sphere to the corresponding femoral head point cloud. An iterative cylindrical fitting algorithm is used to describe the neck shaft axis. The femoral canal is determined using three steps: 1) the femur is sliced at 10mm increments below the lesser trochanter, 2) the femoral canal boundary is determined at each slice, and 3) the largest circle is fit within each slice's canal boundary. The proximal shaft axis is described by fitting a line to the canal circle center locations. Offset is defined as the distance from the head center to the proximal shaft axis. Finally, the neck shaft angle is the angle between the neck shaft axis and the proximal shaft axis. Results. The goal pertaining to femoral component morphology is to provide meaningful information that can be used to determine how the femoral stem fits within the canal. Regardless of differences in bone sizes and geometries, the algorithm has proven to be successful in describing the femoral morphology of a patient-specific bone model. Discussion. These results lay the groundwork for an automatic stem fitting algorithm, which is described in a subsequent abstract. The morphology knowledge of the femoral head, femoral neck, femoral canal, and various axes can be coupled with known THA component parameters (such as offset, neck length, neck shaft angle, etc.) to allow our algorithms to predict the “best selection” and “best fit” for the femoral stem. This can also be applied to the acetabulum and can then be used as a surgical planning tool as well as a parameter when modeling postoperative predictions. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 473 - 473
1 Nov 2011
Iguchi H Watanabe N Murakami S Hasegawa S Tawada K Yoshida M Kobayashi M Nagaya Y Goto H Nozaki M Otsuka T Yoshida Y Shibata Y Taneda Y Hirade T Fetto J Walker P
Full Access

Introduction: For longer lasting and bone conserving cementless stem fixation, stable and physiological proximal load transfer from the stem to the canal should be one of the most essential factors. According to this understanding, we have been developing a custom stem system with lateral flare and an off-the-shelf (OTS) lateral flare stem system was added to the series. On the other hand, dysplastic hips are often understood that they have larger neck shaft angle as well as larger anteversion. In other words they are in the status called “coxa valga.” From this point of view we had been mainly using custom stems for the dysplastic cases before. After off-the-shelf lateral flare stem system; which is designed to have very high proximal fit and fill to normal femora; was added, we have been using 3D preoperative planning system to determine custom or OTS. Then in most of the cases, OTS stem were suitably selected. Our pilot study of virtual insertion of OTS lateral flare stem into 38 dysplastic femora has shown very tight fit in all 38 cases. The reason was analyzed that the excessive anteversion is twist of proximal part over the distal part and the proximal part has almost normal geometry. In the present study, 59 femora were examined by the 3D preoperative planning system how the excessive anteversion effect to the coxa valga status. Materials and Methods: Fifty-nine femoral geometry data were examined by the 3D preoperative planning system. Thirty-three hip arithritis, 3 RA, 2 metastatic bone tumours, 5 AVN, 1 knee arthritis, 12 injuries, and 3 normal candidates were included. Among them one arthritic Caucasian and one AVN South American were included. The direction of the femoral landmarks; centre of femoral head (CFH), lesser trochanter (LTR), and asperas in 3 levels (just below LTR, upper 1/3, mid femur; A1-3); were assessed as the angle from knee posterior condylar (PC) line. Neck shaft angle of each case was assessed from the view perpendicular to PC line and neck shaft angle form the view perpendicular to CFH and femoral shaft (i.e. actual neck shaft angle). Results: Average anteversion was 34.4 +/−9.9 degree. CFH and LTR correlated well (i.e. they rotate together). A1, A2, A3 correlated well (i.e. they rotate together). LTR and A1 correlate just a little, LTR and A2 were independent each other. So the twist existed around A1. Neck shaft angle was 138.7+/−6.6 in PC line view and in actual view 130.3+/−4.4. No excessive neck shaft angle was observed in actual view. Even the case that has the largest actual neck shaft angle (140.4), the virtual insertion showed good fit and fill with the lateral flare stem. Conclusion: In many high anteversion cases, coxa valga is a product of the observation from non perpendicular direction to CFH-shaft plane. Selection or designation of the stem for high anteversion cases should be carefully determined by 3D observation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 54 - 54
23 Jun 2023
Shaath MK Yawman J Anderson T Avilucea F Langford J Munro M Haidukewych GJ
Full Access

Intertrochanteric fractures are common, accounting for nearly 30% of all fracture related admissions. Some have suggested that these fractures should be treated in community hospitals so as not to tax the resources of Level One trauma centers. Since many factors predictive of fixation failure are related to technical aspects of the surgery, the purpose of this study was to compare radiographic parameters after fixation comparing trauma fellowship trained surgeons to non-fellowship trained community surgeons to see if these fractures can be treated successfully in either setting. Using our hospital system's trauma database, we identified 100 consecutive patients treated with cephalomedullary nails by traumatologists, and 100 consecutive patients treated by community surgeons. Quality of reduction, neck shaft angle (NSA), tip-to apex distance (TAD) were compared. The mean TAD for the trauma group was 10mm compared to 21mm for the community group (p<0.001). The mean postoperative NSA for the trauma group was 133 degrees compared to 127 degrees for the community group (p<0.001). The mean difference in the NSA of the fractured side compared to the normal hip was 2.5 degrees of valgus in the trauma group compared to 5 degrees of varus for the community group (p<0.001). There were 93 good reductions in the trauma group compared to 19 in the community group (p<0.001). There were no poor reductions in the trauma group and 49 poor reductions in the community group (p<0.001). Fellowship trained traumatologists achieved significantly more accurate reductions and implant placement during cephalomedullary nailing of intertrochanteric hip fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 13 - 13
3 Mar 2023
Rohra S Sinha A Kemp M Rethnam U
Full Access

Background. Dynamic Hip Screw (DHS) is the most frequently used implant in management of intertrochanteric femoral fractures. There is a known statistical relationship between a tip-apex distance (TAD) >25mm and higher rate of implant failure. Our aim was to analyse all DHS procedures performed in our trust from seventeen months and compare their TAD values to the acceptable standard of ≤25mm. Methods. All patients undergoing DHS between April 2020-August 2021 were identified from our theatre system. Additionally, those presenting to hospital with implant failures were included. Patient demographics, date of surgery, fracture classification (AO) and date/mode of failure were recorded. Intraoperative fluoroscopy images were reviewed to calculate TAD, screw location and neck shaft angles by two independent observers. Results. 215 patients were identified, five of which were excluded due to inadequate fluoroscopy. Failure was seen in 3.3% of the cohort (n=7), of which 71.4% had an unacceptable TAD. In total, 21 patients (10%) had TAD >25mm, of whom 12 had superiorly and 15 had posteriorly placed screws. There were no failures in patients with a TAD of <20mm whereas a TAD >30mm had 50% failure rate. Conclusion. This audit reinforces the importance of aiming for a low TAD (preferably <20mm) intraoperatively. It is also desirable to avoid superiorly and significantly posteriorly placed screws. Implications. Complex hip revision surgery in the elderly bears substantial financial implications to the NHS and, more importantly, causes prolonged morbidity to the patient. Adhering to established standards will ensure reduced implant failure and best patient care


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 45 - 45
7 Nov 2023
Mwelase S Maré P Marais L Thompson D
Full Access

Children with osteogenesis imperfecta (OI) frequently present with coxa vara (CV). Skeletal fragility, severe deformity and limited fixation options make this a challenging condition to correct surgically. Our study aimed to determine the efficacy of the Fassier technique to correct CV and determine the complication rate. Retrospective, descriptive case series from a tertiary hospital. We retrospectively reviewed records of a cohort of eight children (four females, 12 hips) with OI (6/8 Sillence type III, 2/8 type IV) who had surgical treatment with Fassier technique for CV between 2014 and 2020. Inclusion Criteria: All patients with CV secondary to OI treated surgically with Fassier technique. Exclusion Criteria: Patients older than 18 years; Patients with CV treated non-operatively or by surgical technique different to Fassier technique. Data relating to the following parameters was collected and analyzed: demographic data, pre- and postoperative neck shaft angle (NSA), complications and NSA at final follow-up. The mean age at operation was 5.8 years (range 2–10). The mean NSA was corrected from 96.8° preoperatively to 137º postoperatively. At a mean follow-up of 38.6 months, the mean NSA was maintained at 133°, and 83% (10/12) of hips had an NSA that remained greater than 120°. There was a 42% (5/12) complication rate: three Fassier–Duval rods failed to expand after distal epiphyseal fixation was lost during growth; one Rush rod migrated through the lateral proximal femur cortex with recurrent coxa vara; and one Rush rod migrated proximally and required rod revision. The Fassier technique effectively corrected CV in children with moderate and progressively deforming OI. The deformity correction was maintained in the short term. The complication rate was high, but mainly related to the failed expansion of the Fassier–Duval rods


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 87 - 87
17 Apr 2023
Aljuaid M Alzahrani S Bazaid Z Zamil H
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR). A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of AI were 38.02±3.89 and 40.15±4.40 (P 0.02, significant gender difference) for males and females, respectively. Nonetheless, Head neck shaft angle (HNSA) means were 129.90±5.55 and 130.72±6.62 for males and females, respectively. However, AAR and FHAR means for males and females were 21.3±3.1mm, 19.9±3.1mm, P 0.04 and 19.7±3.1mm, 18.1±2.7mm, P 0.019, respectively. In addition, negative significant correlations were detected between AI against AAR, FHAR, HNSA and body mass index (BMI) (r 0.529, P ≤0.0001, r 0.445, P ≤0.0001, r 0.238, P 0.029, r 0.329, P ≤0.007, respectively). On the other hand, high BMI was associated with AAR and FHAR (r 0.577, P 0.0001 and r 0.266, p 0.031, respectively). This study shows that high AI is correlated with lower AAR, FHAR. Each ethnic group has its own normal values that must be studied to tailor the path for future implications in clinical setting


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 172 - 172
1 Mar 2008
Yagihashi K Nishimura I Ishida T Ito H Tanino H Nakamura T Matsuno T Mitamura Y
Full Access

Prosthetic impingement after THA is to different for the angle and shape of the implant. Purpose of this study is examine the range of motion(ROM) on a computer when angle and shape of the implant are changed. The 3D implant models were created on a computer. The angle was measured in the flexion, extension, adduction direction byevery 0.1 degrees. There are three kinds of acetabular abduction angle, two kinds of acetabular anteversion angle and two kinds of femoral anteversion angle. There are three kinds of the radius of neck and the neck shaft angle. All 324 patterns of the above model were measured. When the radius of neck decreased, the ROM increased in all cases. When the neck shaft angle decreased, the ROM increased by almost all cases. When the acetabular anteversion angle increased, the ROM of flexion direction increased and adduction direction decreased, and as for the extension direction, all the factors had influenced the change in the ROM. When the acetabular angle increased, the ROM of the extension direction increased and the flexion directions decreased. As for adduction direction, femoral anteversion angle, acetabular anteversion angles, and the radius of neck had influenced the ROM. When the femoral anteversion angle increased, the ROM of flexion direction increased and extension, adduction direction decreased. The clinical ROM is affected by the impingement of non-implant and the strain of the soft tissue. Therefore, It’ s considered that the clinical ROM is smaller than the ROM which was investigated in this study in many cases. When the radius of neck and the neck shaft angle decrease, the increase of the ROM expected. However the radius of the neck should not be decreased too much to avoid the decrease of the neck strength


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 97 - 98
1 Mar 2010
Iguchi H Tanaka N Kobayashi M Nagaya Y Goto H Nozaki M Murakami S Hasegawa S Tawada K Yoshida Y Otsuka T Fetto J
Full Access

One of the most important characteristic of the developmental dysplastic hip (DDH) is high anteversion in femoral neck. Neck-shaft angle is also understood to be higher (i.e. coxa-valga) in DDH femora. From this understanding many DDH intended stems were designed having larger neck shaft angle. According to the result of our prior study; reported in ISTA 2005 etc.; using computer 3-D virtual surgery of high fit-and-fill lateral flare stem into high anteversion patients, it was revealed that the geometry of proximal femur itself does not have big difference from normal femora but they are only rotated blow lessertrochanter. It is very important to know what anteversion is, and where anteversion is located, to design a better stem and to decide more proper surgical procedures for DDH cases with high anteversion. In the present study, the geometry of 57 femora was assessed in detail to reveal the geometry of anteversion and its location in the DDH femora. Fifty seven CAT scan data with many causes were analyzed. Thirty-two DDH, 3 Rheumatic Arthritis (RA), 2 metastatic bone tumors, 4 avascular necrosis (AVN), 1 knee arthritis, 12 injuries, and 3 normal candidates were included. Whole femoral geometries were obtained from CAT scan DICOM data and transferred to CAD geometry data format. All the following landmarks were measured its direction by the angle from posterior condylar line. The assessed landmarks were. anteversion,. lesser trochanter,. linea aspera at the middle of the femur, and two more (upper 1/6, 2/6 level of aspera) linea aspera directions were assessed between ii) and iii). All the directions were measured by the angle from the medial of the femur. The direction of anteversion and lesser trochanter were well correlated, (R=0.55, Y=0.56X−35) i.e. femoral head and lesser trochanter were rotated together. The direction of lesser trochanter and aspera in upper 1/6 section had no relation even they are located very close with only several cm distance, (R=−0.03, Y=−0.02X−88) i.e. however the lesser trochanter was rotated, the upper most aspera was located almost at the same direction (−87.5+/−7.58 degree). The direction of aspera at upper 1/6 and middle femur were strongly correlated. (R=0.63, Y=0.81X-22) i.e. they stay at the same direction. The results mean that the anteversion is a twist between normal proximal femur (from femoral head and lesser trochanter) and normal distal femur. The twist was located just blow lesser trochanter within several centimeter. The anteversion has been understood as the abnormal mutual position between femoral neck and femoral shaft. In high anteversion hips the neck shaft angle was also believed to be higher, so several DDH oriented stems have higher neck shaft angle i.e. coxa-valga geometries. It has been believed that the location of the anteversion was around neck part. This study revealed that the deformity was located in the very narrow part just below lesser trochanter. It has been discussed that DDH oriented stems should have fit to different canal geometries, but understanding the biomechanics of abnormal anteversion and its treatment should be more important


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 65 - 65
1 Mar 2012
Symons S Robin J Dobson F Selber P Graham H
Full Access

Proximal femoral deformity is common in children with cerebral palsy (CP), contributing to hip instability and ambulation difficulties. This population-based cohort study investigates the prevalence and significance of these deformities in relation to Gross Motor Function Classification System (GMFCS) level. Children with a confirmed diagnosis of CP born within a three-year period were identified from a statewide register. Motor type, topographical distribution and GMFCS level were obtained from clinical notes. Neck Shaft Angle (NSA) and Migration Percentage (MP) were measured from an anteroposterior pelvis x-ray with the hips internally rotated. Measurement of FNA was by the Trochanteric Palpation Test (TPAT) or during fluoroscopic screening of the hip with a guide wire in the centre of the femoral neck. Linear regression analysis was performed for FNA, NSA and MP according to GMFCS level. 292 children were eligible. FNA was increased in all GMFCS levels. The lowest measurements were at GMFCS levels I and II p<0.001. GMFCS levels III, IV, and V were uniformly high p<0.001. Neck shaft angle increased sequentially from GMFCS levels I to V (p<0.001). This study confirms a very high prevalence of increased FNA in children with CP in all GMFCS levels. In contrast, NSA and MP progressed step-wise with GMFCS level. We propose that increased FNA in children with CP represents failure to remodel normal fetal alignment because of delay in ambulation and muscle imbalance across the hip joint. In contrast, coxa valga is an acquired deformity and is largely related to lack of weight bearing and functional ambulation. The high prevalence of both deformities at GMFCS levels IV and V explain the high rate of displacement in these hips and the need for proximal femoral realignment surgery in the prevention and management of hip displacement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 74 - 74
1 Feb 2012
Devalia K Wright D Sathyamurthy P Pidikiti P Bruce C
Full Access

Opinions about the treatment of Perthes' disease vary widely. However there is no disagreement about the need for containment during fragmentation stage to create an optimum biomechanical environment for remodelling of femoral head. Types of containment may vary. Younger children do well irrespective of the method of containment. Older children usually require surgical containment. The present study was aimed at evaluating the results of different methods of surgical containment in different age group and identifying specific factors that alter the final outcome and prognosis. 107 cases were reviewed retrospectively. 21 cases were excluded due to lack of records. 86 hips were available for clinical and radiological evaluation. 31 patients were under 7 years and required Varus osteotomy (VO). 55 patients were above 7 years. VO was performed in 30 hips and Shelf containment was done in 25. Case notes were reviewed for demographic details, surgical details and clinic letters. Radiographs were reviewed for Herring's grading, Stulberg staging, containment indices, centre edge angle, lateral pillar height, Mose index, neck shaft angle and shelf width. In all patients, there was an improvement in pre-operative symptoms and summated range of motion, especially abduction. Good functional and radiological outcome was seen in age group < 7 years. In older children, outcome was good to satisfactory with Herring grade B. Stulberg grading worsened with advancing age and Herring grade C, irrespective of the method of containment. Persistence of varus neck shaft angle and trochanteric overgrowth were significant problems with VO. Although all containment indices improved with Shelf group, Stulberg grading remained poor in most patients. The lateral pillar classification and age strongly correlate with final outcome. Herring group C had the least favourable result. Stulberg staging remained poor in older children irrespective of the method of containment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 148 - 148
1 Jan 2016
Lee T McGarry M Stephenson D Oh JH
Full Access

Introduction. Reverse total shoulder arthroplasty continues to have a high complication rate, specifically with component instability and scapular notching. Therefore, the purpose of this study was to quantify the effects of humeral component neck angle and version on impingement free range of motion. Methods. A total of 13 cadaveric shoulders (4 males and 9 females, average age = 69 years, range 46 to 96 years) were randomly assigned to two studies. Study 1 investigated the effects of humeral component neck angle (n=6) and Study 2 investigated the effects of humeral component version (n=7). For all shoulders, Tornier Aequalis® Reversed Shoulder implants (Edina, MN) were used. For study 1, the implants were modified to 135, 145 and 155 degree humeral neck shaft angles and for Study 2 a custom implant that allowed control of humeral head version were used. For biomechanical testing, a custom shoulder testing system that permits independent loading of all shoulder muscles with six degree of freedom positioning was used. (Figure 1) Internal control experimental design was used where all conditions were tested on the same specimen. Study 1. The adduction angle and internal/external humeral rotation angle at which impingement occurred were measured. Glenohumeral abduction moment was measured at 0 and 30 degrees of abduction, and anterior dislocation forces were measured at 30 degrees of internal rotation, 0 and 30 degrees of external rotation with and without subscapularis loading. Study 2. The degree of internal and external rotation when impingement occurred was measured at 0, 30 and 60 degrees of glenohumeral abduction in the scapular plane with the humeral component placed in 20 degrees of anteversion, neutral version, 20 degrees of retroversion, and 40 degrees of retroversion. Statistical analysis was performed with a repeated measures analysis of variance with a Tukey post-hoc test with a significance level of 0.05. Results. Study 1. Adduction deficit angles for 155, 145, and 135 degree neck-shaft angle were 2 ± 5 degrees of abduction, 7 ± 4 degrees of adduction, and 12 ± 2 degrees of adduction (P <0.05), respectively. Impingement-free angles of humeral rotation and abduction moments were not statistically different between the neck-shaft angles. The anterior dislocation force was significantly higher for the 135degree neck-shaft angle at 30 degrees of external rotation and significantly higher for the 155 degree neck shaft angle at 30 degrees of internal rotation (P<.01). The anterior dislocation forces were significantly higher when the subscapularis was loaded (P <0.01). Study 2. Maximum external rotation was the limiting position for impingement particularly at 0 degrees of abduction. Maximum external rotation before impingement occurred increased significantly with increasing humeral retroversion (p < 0.05) (Figure 2). No impingement or subluxation occurred at any humeral version in 60 degrees of glenohumeral abduction. Conclusion. In reverse shoulder arthroplasty, 155 degree neck-shaft angle was more prone to impingement with adduction but had the advantage of being more stable. In addition, 40 degrees of retroversion has the largest range of humeral rotation without impingement


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 581 - 582
1 Nov 2011
Xenoyannis GL Yach J
Full Access

Purpose: Intra-articular screw penetration with the use of proximal humeral locking plates has a reported incidence in the literature of up 25%. It may occur early, due to an intra-operative unrecognized technical error, or as a result of late fracture collapse. This study was designed to demonstrate the “approach-withdraw” technique of intra-operative fluoroscopy which can be used to minimize the rate of early unrecognized intra-articular screw penetration. Method: A radiographic review was undertaken of 37 patients with proximal humerus fractures fixed with either the PHILOS plate (Synthes, Westchester, Pennsylvania) or the Periloc proximal humerus plate (Smith and Nephew, Memphis, TN) by the senior author (JY) between 2002 and 2009. Intra-operative fluoroscopy was used in each case to ensure there was no intra-articular screw encroachment by visualizing each screw tip approach and then withdraw from the articular surface during live fluoroscopy as the shoulder was taken through a range of motion. Patients were then followed for an average of nine months with serial radiographs for post-operative intra-articular screw penetration, screw loosening, and maintenance of reduction. Maintenance of reduction was evaluated using the change in neck shaft angle and greater tuberosity to humeral height difference on the initial post-operative x-rays as compared to the x-rays at final follow-up. Results: An average of six screws (range three to nine) was placed into the humeral head per patient. There was no incidence of intra-articular screw penetration on immediate post-operative radiographs. One patient had loss of reduction with a single screw breaching the sub-chondral bone and four screws loosening after a fall in the early postoperative period. The remainder of patients had no evidence of intra-articular screw penetration or screw loosening at last follow-up. One patient developed a non-union and had a subsequent reconstruction. The average change in neck shaft angle was four degrees (range 0° to 16°) and greater tuberosity to humeral head height difference was 1.9 mm (range 0 – 8.9). Conclusion: The approach-withdraw technique is a useful intra-operative fluoroscopic test which may be utilized in the fixation of proximal humerus fractures to avoid unrecognized intra-operative screw penetration of the glenohumeral joint


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 470 - 470
1 Aug 2008
Rasool M
Full Access

Unrecognised DDH may present late in older children. The problems lie in reducing the femoral head into the acetabulum, obtaining concentric reduction and obtaining a functional hip. The aim of this paper is to describe our early results with operative reduction, femoral shortening and derotation in older children with DDH. Ten hips in 9 girls, aged 3–9 years, with DDH, seen over a 10 year period, underwent operative treatment. Pre-operative traction was not used. The femoral head was exposed through an anterior oblique incision, and femoral shortening and varus derotation osteotomy was performed through a separate lateral approach. The hip was fixed with a plate (6 cases) and cross K wires (4 cases) and immobilized in a spica cast for 6 weeks. A neck shaft angle of 90. 0. –130. 0. was obtained. The osteotomies healed in all hips. Minor skin problems were pin tract sepsis and pressure effects from the cast in 2 patients. Follow up ranged from 6 months to 5 years. Functional and radiological assessment was done to assess the outcome. Pain with avascular necrosis occurred in one patient and another had subluxation of the hip. The CE angle ranged from 0. 0. –30. 0. , neck shaft angle 90. 0. –130. 0. , leg length discrepancy from 1cm 2.5cm. The results were good in 6, satisfactory in 2 and poor in 2 children. Remodeling of the neck shaft and acetabulum was seen in the majority. Although the follow up period is short, the results of open reduction and femoral shortening in late DDH is encouraging. The author concludes that the combination of open reduction, femoral shortening and varus derotation osteotomy gave good to satisfactory results in the majority of patients


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 566 - 566
1 Aug 2008
Phadnis A Dussa C Singhal K
Full Access

Aim: To test the accuracy of implant positioning in using computer navigation in Resurfacing hip arthroplasty. Materials and methods: Brain Lab was used to register 13 cadavers. The component position was fine tuned to a desirable valgus angle. Wire was passed using navigation. The femoral heads were sectioned after insertion of the prosthesis. The measurements from the screen-shots and the transverse sections were analysed using AutoCad®. Results: The Brain lab Registered the femoral heads to 124.91° ± 14.25° (Range 97° −148° ) CCD. The actual neck shaft angles were 126.11° ± 5.33°. The implants were placed in an angulation’s of 131.46° ± 5.27 ° (Range 116° −137° ) and a version of −0.85° ± 2.1° this gave a valgus of 5.91° ± 13.66°. The position of the wire in the isthmus of the neck was −0.52 mm ± 0.69 mm inferior to the centre and 1.7mm ± 1.9 mm posterior to the centre on the transverse sections (n=6). The components were in 8.69° ± 4.95° (n= 6) valgus to the native neck shaft angle. In only 1 hip the femoral head implanted was of the same size as suggested by navigation, in all the rest of the hips the femoral component was of a larger size. This was because it was felt that implanting a smaller size would cause notching of the superolateral neck. Conclusion: There is a learning curve involved for registering the femoral heads using computer navigation systems, however the navigation gives the surgeon a distinct advantage of being able to choose the point of entry, implant the prosthesis in as valgus position as possible in relation to the femoral head, translate the implant anteriorly and place the peg in the centre of the femoral neck in both the planes. The computer-aided navigation can optimise the component positioning and thereby provide excellent results


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 566 - 566
1 Aug 2008
Phadnis A Dussa C Singhal K
Full Access

Aim: To test the accuracy of implant positioning in using computer navigation in Resurfacing hip arthroplasty. Materials and methods: Brain Lab was used to register 13 cadavers. The component position was fine tuned to a desirable valgus angle. Wire was passed using navigation. The femoral heads were sectioned after insertion of the prosthesis. The measurements from the screenshots and the transverse sections were analysed using AutoCad. Results: The Brain lab Registered the femoral heads to 124.91° ± 14.25° (Range 97°–148° ) CCD. The actual neck shaft angles were 126.11° ± 5.33°. The implants were placed in an angulation’s of 131.46° ± 5.27 ° (Range 116° –137° ) and a version of –0.85° ± 2.1° this gave a valgus of 5.91° ± 13.66°. The position of the wire in the isthmus of the neck was –0.52 mm ± 0.69 mm inferior to the centre and 1.7mm ± 1.9 mm posterior to the centre on the transverse sections (n=6). The components were in 8.69° ± 4.95° (n= 6) valgus to the native neck shaft angle. In only 1 hip the femoral head implanted was of the same size as suggested by navigation, in all the rest of the hips the femoral component was of a larger size. This was because it was felt that implanting a smaller size would cause notching of the supero-lateral neck. Conclusion: There is a learning curve involved for registering the femoral heads using computer navigation systems, however the navigation gives the surgeon a distinct advantage of being able to choose the point of entry, implant the prosthesis in as valgus position as possible in relation to the femoral head, translate the implant anteriorly and place the peg in the centre of the femoral neck in both the planes. The computer-aided navigation can optimise the component positioning and thereby provide excellent results


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 93 - 93
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction. Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters. Objective. The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes. Methods. The femoral components in our process contain five parameters: stem length, neck offset, neck length, neck shaft angle, and component width. There are many steps to measure the morphologic parameters of a femoral component. (1)Preparation of training implant database, (2)defining multi-plane intersection, (3)determining circumcircles for all intersected femoral component contours, (4)finding centers and radii of circumcircles, (5)measuring distances from each circumcircle to the femoral component head center, and (6)determining the stem shaft axis. The FSM fits specific femoral canal using a 3D mesh model of the femur. The femoral component and canal morphology of a femur model are compared to the training femoral component database. For each femoral component morphology, the algorithm determines how far distally the femoral component fits within the canal before collision between the stem and cortical bone. Once the defined position is confirmed, the relative distance from the anatomical femoral head center to the femoral component head center is calculated. This process is repeated for all femoral component morphology. The best fitting femoral component is determined when the distance from its head center to the femoral head center is minimized, Figure 1. Results. Three intensive validation tools have been developed: (1) cross-sectional analysis, (2) slice analysis, and (3) contact map analysis. Cross-sectional analysis is a graphic interaction program where users can freely view the anatomy at any orientation, Figure 2. The slice analysis enhances the user visualization by providing a static view of the fit between chosen femoral component and femoral canal, Figure 3. Finally, the contact map analysis allows for visualization of contact area through the bone-stem interface. Conclusion and Discussion. This is a powerful tool with the FSM that allows surgeons to get a “best fit” implant in 3D, based on canal fit and distance from anatomical femoral head center. Surgeons may want to manually size up or down, but the program will pick best fit sizes based on anatomical morphology. Future iterations will consider the reaming depth each surgeon uses to improve implant selection for each surgeon's technique. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2018
O'Connor J Hill J Beverland D Dunne N Lennon A
Full Access

This study aimed to assess the effect of flexion and external rotation on measurement of femoral offset (FO), greater trochanter to femoral head centre (GT-FHC) distance, and neck shaft angle (NSA). Three-dimensional femoral shapes (n=100) were generated by statistical shape modelling from 47 CT-segmented right femora. Combined rotations in the range of 0–50° external and 0–50° flexion (in 10° increments) were applied to each femur after they were neutralised (defined as neck and proximal shaft axis parallel with detector plane). Each shape was projected to create 2D images representing radiographs of the proximal femora. As already known, external rotation resulted in a significant error in measuring FO but flexion alone had no impact. Individually, neither flexion nor external rotation had any impact on GT-FHC but, for example, 30° of flexion combined with 50°of external rotation resulted in an 18.6mm change in height. NSA averaged 125° in neutral with external rotation resulting in a moderate increase and flexion on its own a moderate decrease. However, 50° degrees of both produced an almost 30 degree increase in NSA. In conclusion, although the relationship between external rotation and FO is appreciated, the impact of flexion with external rotation is not. This combination results in apparent reduced FO, a high femoral head centre and an increased NSA. Femoral components with NSAs of 130° or 135° may historically have been based on X-ray misinterpretation. This work demonstrates that 2D to 3D reconstruction of the proximal femur in pre-op planning is a challenge


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 73
1 Mar 2002
Stiehl J
Full Access

This paper reviews the causes of chronic instability after total hip arthroplasty (THA). The overall reported incidence varies from 0.5% to 9.5%. At 2% to 6%, the incidence following primary THA is higher with a posterior approach than with an anterior approach (0.5% to 3%). The incidence is reported to be as high as 22% after revision THA and 50% after extensile triradiate approach for pelvic discontinuity. Inadequate soft tissue lengthening, damaged abductors and nonunion of trochanteric osteotomy are known to predispose patients to chronic instability after THA. Elderly women are particularly susceptible. Poor patient compliance is also a cause. Surgical technique is also a factor. The lateral decubitus position often causes flattening of the lumbar lordosis, leading to potential cup retroversion. Over 90% of all dislocations are posterior, and disruption of external rotators and capsular damage should be repaired if possible. The optimal implant position appears to be 40° TO 45° of abduction, 15° to 20° of femoral anteversion, and 20° to 30° of cup flexion. Elevation of the hip centre weakens abductor pull, causing instability. Because a reduced femoral offset causes potential instability, this should be measured preoperatively to make sure that the stem can provide adequate offset. It may be necessary to add a thicker liner to increase the offset. Prosthetic factors which play a role in chronic instability include the use of smaller femoral heads, thick necked stems and heads with skirts. A larger femoral head increases stability simply by increasing the radian about the hip centre, increasing the potential range of motion. Extended posterior wall-adds improve the range of motion, and consequently the stability. However, there are fears that their use may increase the incidence of impingement and/or lead to increased wear. Skirted femoral heads impinge on the liner, limiting movement, and their use should be avoided in most cases of instability. Femoral stem offset relates to the neck shaft angle and the effective hip centre/shaft axis length or offset. It is easier to increase offset with lower neck shaft angle than to lengthen the leg. Because a bell curve is used in the design of femoral stems, many prosthetic systems lack adequate offset, especially when larger stems (48 mm to 52 mm) are used. In earlier prosthetic designs, bulk was added to the necks to eliminate stem breakage. In certain stems, the way in which dimensions were scaled meant the neck dimensions of larger prostheses were disproportionately big. We stopped using Depuy Stability stems sizes 16 mm and 18 mm because of this. Thornberry et al have shown that a circulotrapezoidal neck design is the best shape and leads to the least impingement. They have also shown that increasing the width of the chamfer of the acetabular liner rim improves the range of motion. In treating early instability (occurring less than 30 days postoperatively) most authors recommend bracing for six to eight weeks and warning patients severely about the long-term potential of redislocation. In cases of chronic instability (occurring more than 30 days postoperatively) all potential problems must be explored: these include soft tissue laxity, cup retroversion, inadequate offset, surgical approach, etc. In managing multiple dislocation, the use of extended immobilisation is less desirable although patients who have undergone revision have been subjected to a great deal of soft tissue dissection and potentially should be braced for up to 12 months. If the cause is correctable-malpositioning, soft tissue laxity or bony impingement – treatment is likely to be successful in 85% of cases. However, if the implants are in good position, the ‘bloodless revision’ (Fehring) has less than 50% chance of succeeding. The implication is that an extended posterior wall liner, longer modular femoral head, and soft tissue reconstruction are not going to work in the majority of cases. Designed by Noiles, the J& J SROM constrained acetabular liner uses a polyethylene capture mechanism that is secured by two additional screws. The pullout strength of this device is 1 350 N but torque required (lever-out strength) diminishes to 17.3 N.m for a 28-mm head. With a 32 mm head, 105° of flexion was obtained (while the normal hip needs up to 113° for usual flexion). Following up 21 patients with this implant for over two years, Anderson et al found redislocation in 29%. The only causative factor identified was an abduction angle of more than 70°. However, there were no cases of implant loosening of this device. Prevention of loosening was one of the design goals in using a ‘softer’ locking mechanism. Dislodgement of the liner requires immediate re-operation. The Osteonics constrained liner cup has a dual socket. The inner socket has a polished chrome surface manufactured fit to the outer socket. It fits a 22 mm or 28 mm head, and has a locking ring identical to the bipolar implant that holds the head in place. The implant can be snap-fitted into a 52-mm or larger Osteonics cup. This liner can also be cemented into another metal-backed liner. Goetz et al evaluated 56 cases, in 10 of which this implant had been cemented and in 46 lock-fitted in appropriately matched metal shells. In one case, the cemented constrained liner had separated from the metal shell. None of the constrained liners had separated from the metal shells, but one shell had loosened. There are many similar constrained acetabular liners. The choice is between a ‘locked’ liner that can never separate and a ‘softer’ lock that may protect fixation of the cup