Aims. Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld
Purpose:
The detection and treatment of acute compartment syndrome following trauma is critical if contractures, delayed fracture healing and possible amputations are to be avoided. The current standard for monitoring relies on invasive compartment pressure measurements. These require an additional procedure and cause discomfort to the patient. This prospective clinical study investigates the relationship between the intra-compartmental pressure and soft tissue oxygenation (%StO. 2. ) measured non-invasively by
Despite advances in treating acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Augmentation of mean arterial blood pressure (MAP) to promote blood flow and oxygen delivery to the injured cord is one of the only currently available treatment options to potentially improve neurological outcomes after acute spinal cord injury (SCI). However, to optimize such hemodynamic management, clinicians require a method to measure and monitor the physiological effects of these MAP alterations within the injured cord in real-time. To address this unmet clinical need, we developed a series of miniaturized optical sensors and a monitoring system based on multi-wavelength
This prospective clinical study investigates the relationship between intra-compartmental pressure and soft tissue oxygenation (StO2) measured non-invasively by