Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood
Introduction: The existence of circulating skeletal stem cells in the peripheral blood from different species including adult mouse and human has been found and documented. The circulating skeletal stem cells may provide a new source of stem cells that may be used for bone regeneration and tissue engineering applications. The aim of this study was to investigate the existence of circulating osteogenic stem cells in the rat peripheral blood, and to compare their osteogenic potentials with bone marrow mesenchymal stem cells (BMMSCs). Methods: Whole blood from twelve female 3-month old SD rats was harvested by cardiac puncture and bone marrows were also collected.
Aims. To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment. Methods. We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood
The authors wished to determine if macrophage activation and the release of osteolytic cytokines in response to orthopaedic wear debris could be suppressed pharmacologically with the use of anti-inflammatory and anti-oxidant agents. The current long-term results of total joint arthroplasty are limited by mechanical wear of the implants with an associated immune mediated bone lysis with subsequent loosening and eventual failure. It has been demonstrated that the osteolysis seen in cases of aseptic loosening is mediated by the immune system both directly and indirectly by activated macrophages. Macrophages indirectly cause osteolysis through release of the osteoclast activating cytokines TNFα, IL-1 and PGE2. They also directly resorb bone in small amounts when activated by wear particles. We utilised established cell culture models of both peripherally derived monocyte/macrophages and lymphocyte enriched co-cultures and examined the effects of polymethylmethacrylate particles alone on the cells in culture. The effect of anti-inflammatory and anti-oxidant agents (dexamethasone, diclofenac and n-acetyl cysteine) in varying concentrations was then examined using ELISA of cytokine release and electron microscopy to examine ultra structural responses. Cell viability was also measured in cultures over 24 hour periods (at 6, 12 and 24 hours) using Trypan blue exclusion and Coulter counter, while cell type and morphology were determined cytologically, including-naphthyl acetate esterase cytochemical identification and electron microscopy. The use of N-acetyl cysteine was associated with very significant suppression of TNF, IL-1 and PGE2 in both macrophage and lymphocyte enriched co-culture with no effect on cell viability. While diclofenac was also associated with significant decreases in cytokine expression, it was associated with a decrease in cell viability that approached significance. Dexamethasone did not have a reliable effect on these cytokines. Ultra-structural electron microscopic examination of the cells also demonstrated signs of definite down-regulation of cytoplasmic and nuclear activation. Novel anti-oxidant therapies and possibly other immune modulating drugs can eliminate the activation of macrophages in response to periprosthetic wear particles without any associated decrease in cell viability and thus may provide a means of reducing the incidence of loosening and failure of total joint arthroplasty.
Objectives. Traumatic brachial plexus injury causes severe functional impairment
of the arm. Elbow flexion is often affected. Nerve surgery or tendon
transfers provide the only means to obtain improved elbow flexion.
Unfortunately, the functionality of the arm often remains insufficient.
Stem cell therapy could potentially improve muscle strength and
avoid muscle-tendon transfer. This pilot study assesses the safety
and regenerative potential of autologous bone marrow-derived mononuclear
cell injection in partially denervated biceps. Methods. Nine brachial plexus patients with insufficient elbow flexion
(i.e., partial denervation) received intramuscular escalating doses
of autologous bone marrow-derived
Objectives. In order to screen the altered gene expression profile in peripheral blood
Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow
Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood
Chronic Achilles tendinopathy is characterised by sub-acute inflammation with pro-inflammatory type 1 macrophages (M1), tissue degeneration and consequent partial or total tendon injury. Control of the inflammatory response and M1-to-M2 macrophage polarisation can favour tendon healing both directly and indirectly, by allowing for the regenerative process driven by local mesenchymal stem cells. Ten patients (3 females and 7 males aged between 32 and 71 years old) with partial Achilles tendon injury were treated with injections of autologous peripheral blood
In rheumatoid arthritis (RA) and other arthritic disorders e.g. gout, there is destruction of articular cartilage and juxta-articular bone. Osteoclasts are specialised multinucleated cells (MNCs) that carry out bone resorption. It has previously been shown that circulating monocytes and synovial macrophages in RA can be stimulated to differentiate into functional osteoclasts in the presence of RANKL and M-CSF. The aim of this study was to determine whether the
The April 2012 Hip &
Pelvis Roundup. 360. looks at osteoporotic hip fractures, retrotrochanteric pain, fibrin adhesive and reattachment of articular cartilage, autologous bone marrow
Introduction Intervertebral disc degeneration may cause chronic low back pain. Disc degeneration is characterized by dysfunctional cells and a decrease in extra-cellular components. Bone marrow derived
Introduction: Osteoclast-like multinucleated giant cells (MNGCs) are found in a number of soft tissue sarcomas including malignant fibrous histiocytoma and leiomyosarcoma. The nature of these MNGCs is poorly understood and the cellular mechanisms underlying their accumulation in sarcomas is not known. Methods: We analysed by immunohistochemistry the expression of osteoclast, macrophage and smooth muscle markers by mononuclear and multinucleated cells in two cases of giant cell-rich leiomyosarcoma. We also characterised the role of
Objectives. The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA. Methods. We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood
Giant cell tumour of bone (GCTB) is a primary tumour of bone characterised by a proliferation of
Introduction. Since 2005, we have performed implantation of bone marrow-derived
Introduction: Cell-based strategies for regeneration and reconstitution of musculoskeletal tissues are gaining interest. The difficulty in obtaining the required amount of mesenchymal stem cells (MSC) stems from their scarcity and the time needed to grow them in culture. We developed a rapid and efficient method to isolate MSC from bone marrow aspirate based on their surface markers, as a platform for future cell based therapy. Methods: Bone marrow was aspirated from the iliac crest of fifteen adult subjects undergoing surgeries involving this bone. 15 ml samples were obtained, fractionated for
Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood
Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic
Intra-articular injections of human mesenchymal stromal cells (MSCs) and platelet-rich plasma (PRP) have been intensively investigated as therapies for knee osteoarthritis (OA) with positive outcomes. In this work we evaluated weather a combination of the treatments (MSCs + PRP) would be beneficial compared to MSCs alone (MSCs) and standard corticosteroid injection (Control group). Forty seven patients (24 males and 23 females; 53.3 ± 10.7 years old) with radiographic symptomatic knee OA (Dejour grades II–IV) were randomized to receive intra-articular injections of MSCs (n = 16), MSCs + PRP (n = 14) or corticosteroid (n=17). MSCs were obtained after