Summary. Comparison of accuracy and precision in measuring wear using 4 commonly used uncemented cup designs shows small differences in mean and data scatter for marker and
Objectives. To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Methods. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance). Results. A total of 288 dynamic RSA images were analyzed. Systematic bias for DRR and MBM with respect to MM in translations (p < 0.018 mm) and rotations (p < 0.009°) were approximately 0. Pitman’s test showed lower random variation in all degrees of freedom for DRR compared with MBM (p < 0.001). Conclusion. Systematic error was approximately 0 for both DRR or MBM. However, precision of DRR was statistically significantly better than MBM. Since DRR does not require marker insertion it can be used for investigation of preoperative hip kinematics in comparison with the postoperative results after joint preserving hip surgery. . Cite this article: L. Hansen, S. De Raedt, P. B. Jørgensen, B. Mygind-Klavsen, B. Kaptein, M. Stilling. Marker free
To measure micromotion of an orthopaedic implant with respect to its surrounding bone, Roentgen Stereo-photogrammetric Analysis (RSA) was developed. A disadvantage of conventional RSA is that it requires the implant to be marked with tantalum beads. This disadvantage can potentially be resolved with
Introduction.
Aseptic loosening of the total TMC joint prosthesis occurs frequently and may depend on the design of the prosthesis. Numerous TMC prosthesis designs are available, and new designs are being developed and tested. One of the problems in the clinical studies of TMC prostheses is identifying and predicting prosthetic loosening at an early stage. Roentgen Stereophotogrammetric Analysis (RSA). allows assessment of three-dimensional micromotion of orthopaedic implants with high accuracy. Early micromotion (in the first two postoperative years) of most prostheses is strongly correlated with the development of aseptic loosening. We studied if RSA assessment was possible after total TMC joint arthroplasty. In five cadaveric hands the TMC joint was replaced by the SR-TMC prosthesis. Tantalum beads of 0.8 mm were implanted in the trapezium and first metacarpal bone without extending the standard surgical exposure. The metacarpal prosthesis component was provided with 0.5 mm beads. A three-dimensional surface model of the trapezium component of the SR-TMC prosthesis was prepared to facilitate
Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). Methods. This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using
Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a clinical study. Methods. In this single-blind, randomized controlled, clinical radiostereometric analysis (RSA) study, the migration pattern of the cemented Corail hip stem was compared between line-to-line and standard cementing in 48 arthroplasties. The primary outcome measure was femoral stem migration in terms of rotation and translation around and along with the X-, Y-, and Z- axes measured using
In this study we validate that weight-bearing images are needed for accurate polyethylene liner wear measurement in total knee prostheses by measuring the difference in minimum joint space width between weight-bearing and non-weight-bearing RSA views. Recent studies show that Model-based Roentgen Stereophotogrammetric Analysis is superior to the conventional in vivo measurements of polyethylene liner wear in total knee prostheses. Although it is generally postulated that weight-bearing (standing) views are required to detect liner wear, most RSA images are acquired in non-weight-bearing (supine) view for practical reasons. Therefore, it would be of interest to know if supine views would be sufficient for measuring TKA liner wear, defined as a change in minimum joint space width (mJSW). As a difference in mJSW between weight-bearing and non-weight-bearing RSA images has never been validated, the aim of this study is to compare the outcome of in vivo measurements of mJSW in total knee prosthesis when conducted with weight-bearing and non-weight-bearing RSA views.Summary
Introduction
The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using
Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using
Vitamin E-doped cross-linked polyethylene (VEPE) has encouraged the use of larger heads in thinner liners in total hip arthroplasty (THA). However, there are concerns about wear and mechanical failure of the thin liner, especially when metal heads are used. The aim of this randomized controlled trial was to investigate if the use of a large metal head in a thin VEPE liner would increase polyethylene wear compared with a standard 32-mm metal head and to compare periacetabular radiolucencies and patient-reported outcomes in THA. 96 candidates for uncemented THA were randomly allocated to either the largest possible metal head (36–44 mm) that could be fitted in the thinnest available VEPE liner (intervention group) or a standard 32-mm metal head (control group). The primary outcome was proximal head penetration (PHP) measured with
This study used
Objectives. The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. Methods. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing
Model-based Roentgen Stereophotogrammetric Analysis (RSA) measures micromotion of an orthopaedic implant with respect to its surrounding bone, without the use of markers on the implant. In previous studies with a total knee prosthesis,
Early micromotion of joint prostheses with respect to the bone can be assessed very accurately by a method called Roentgen Stereophotogrammetric Analysis (RSA); a method that uses two simultaneous X-ray exposures of the joint and has an accuracy of 0.1 mm for translations and 0.3 degree for rotations [. 1. ]. In order to reach this accuracy, metallic markers are inserted into the bone and attached to the surface of the prosthesis. These markers can then be identified automatically in the two radiographs [. 2. ]. Since the adjustments to the prosthesis are difficult, time-consuming and expensive, RSA has only been applied in a limited number of clinical trials. In a previous study we have developed a
Introduction. Surgeons performing a total knee replacement (TKR) have two techniques to assist them achieve proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections, whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the implant migration and kinematics between the two techniques, but the results have been varied. However, these studies have not been done on modern anatomically designed prostheses using radiostereometric analysis (RSA). Anatomical designs attempt to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the major design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one surgical technique may have advantages another. We hypothesize that there would be no difference between GB and MR techniques in implant migration, but that GB might provide better knee kinematics. Methods. Patients were recruited to receive an anatomically designed prosthesis and randomized to groups where the GB or MR technique is used. For all patients in the study, RSA images were acquired at a 2 week baseline, as well as at 6 weeks, 3 months, and 6 months post-operatively. These images were used to collect the maximum total point motion (MTPM) of the tibial and femoral implant components relative to the bone using a
Introduction. The most common method for accurate kinematic analysis of the knee arthroplasty uses bi-planar fluoroscopy and
Purpose. The purpose of this study was to assess the biomechanical stability of the a total ankle arthroplasty system using longitudinal migration (LM) and inducible displacement (ID) measures. This study is the first study of its kind to assess total ankle arthroplasty (TAA) implant micromotion using
Objectives. The accuracy and precision of two new methods of model-based
radiostereometric analysis (RSA) were hypothesised to be superior
to a plain radiograph method in the assessment of polyethylene (PE)
wear. Methods. A phantom device was constructed to simulate three-dimensional
(3D) PE wear. Images were obtained consecutively for each simulated
wear position for each modality. Three commercially available packages
were evaluated:
Background. Migration analysis after total joint arthroplasty are performed using EBRA analysis (Krismer et al., 1997) or - more accurate but also much more cost-intensive and time-consuming – via radiostereometric analysis (RSA). For the latter, additional radiographs from two inclined perspectives are needed in regular intervals in order to define the position of the implant relative to tantalum bone markers which have been implanted during surgery of the artificial joint (Fig. 1). Modern analysis software promises a migration precision along the stem axis of a hip implant of less than 100 μm (Witvoet-Brahm et al., 2007). However, as the analysis is performed semi-automatically, the results are still dependent on the subjective evaluation of the X-rays by the observer. Thus, the present phantom study aims at evaluating the inter- and intra-observer reliability, the repeatability as well as the precision and gives insight into the potential and limits of the RSA method. Materials and Methods. Considering published models, an RSA phantom model has been developed which allows a continuous and exact positioning of the prostheses in all six degrees of freedom (Fig. 2). The position sensitivities of the translative and rotative positioning components are 1 μm and 5 to 24, respectively. The roentgen setup and