This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not.Aims
Methods
Intraoperative histology has a high specificity and sensitivity to identify prosthetic joint infection. However, the usefulness of this technique according to the type of
Aims. The outcomes of patients with unexpected positive cultures (UPCs) during revision total hip arthroplasty (THA) and total knee arthroplasty (TKA) remain unknown. The objectives of this study were to establish the prevalence and infection-free implant survival in UPCs during presumed aseptic single-stage revision THA and TKA at mid-term follow-up. Methods. This study included 297 patients undergoing presumed aseptic single-stage revision THA or TKA at a single treatment centre. All patients with at least three UPCs obtained during revision surgery were treated with minimum three months of oral antibiotics following revision surgery. The prevalence of UPCs and causative
Aims. Currently, the most common approach for the management of a chronic PJI is a Two-Stage Replacement; because of success rates exceeding 90% when using an antibiotic impregnated cement spacer. Reliable information regarding the etiologic
Infection rates following arthroplasty surgery are reported between 1–4%, with considerably higher rates in revision surgery. The associated costs of treating infected arthroplasty cases are over 4 times the cost of primary arthroplasties, with significantly worse functional and satisfaction outcomes. In addition, multiple antibiotic resistant bacteria are developing, so to reduce the infection rates and costs associated with arthroplasty surgery, new preventative methods are required. HINS-light is a novel blue light inactivation technology which kills bacteria through a photodynamic process, and is proven to have bactericidal activity against a wide range of species. The aim of this study was to investigate the efficacy of HINS-light for the inactivation of bacteria isolated from infected arthoplasty cases. Specimens from hip and knee arthroplasty infections are routinely collected in order to identify possible causative organisms and susceptibility patterns. This study tested a range of these isolates for sensitivity to HINS-light. During testing, bacterial suspensions were exposed to increasing doses of HINS-light of (66mW/cm2 irradiance). Non-light exposed control samples were also set-up. Bacterial samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration.Introduction
Methods
We retrospectively selected all cases of microbiologically documented monomicrobial PJI caused by Aim
Method
Aims. This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool. Methods. Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures. Results. The JI panel detected
Background. Data regarding the diagnostic value of ultrasound (US)-determined fluid film and joint aspiration prior to revision total hip arthroplasty (THA) for suspected periprosthetic joint infections (PJIs) is limited. This study aimed to analyse (1) the value of US-determined fluid film, (2) characterisation of the pre- and intraoperative microbiological spectrum and resistance patterns and (3) the concordance between preoperative synovial fluid and intraoperative culture results. Methods. We analysed 366 US-examinations from 340 patients prior to revision THA. Selected cases were categorized into clearly infected, non-infected and inconclusive, according to the International Consensus Meeting (ICM) 2018 Criteria. If US-determined fluid film was <1mm, no aspiration was performed based on our institutional standard protocol. Patients were grouped into no-aspiration (144/366;[39.3%]), dry-tap (21/366;[5.7%]) and a successful-tap (201/366;[54.9%]). The microbiological spectrum and antibiotic resistance patterns were determined and differences were compared between pre- and intraoperative results. Results. The absence of US-determined fluid film showed no correlation with the presence of hip PJI. Overall, 29.9% cases of the no-aspiration-group had a confirmed PJI. Discrepancies were found in 43.2% between successful taps and intraoperative cultures. The most prevalent
Aim. Culture-based conventional methods are still the gold standard to identify
Aim. In severe cases of postoperative spinal implant infections (PSII) multiple revision surgeries may be needed. Little is known if changes of the microbiological spectrum and antibiotic resistance pattern occur between revision surgeries. Therefore, the aim of this study was to analyze the microbiological spectrum and antibiotic resistance pattern in patients with multiple revision surgeries for the treatment of PSII. Furthermore, changes of the microbiological spectrum, distribution of mono vs. polymicrobial infections, and changes of the antimicrobial resistance profile in persistent
Purpose. Unexpected-positive-intraoperative-cultures (UPIC) in presumed aseptic revision-total-knee-arthroplasties (rTKA) are common, and the clinical significance is not entirely clear. In contrast, in some presumably septic rTKA, an identification of an underlying pathogen was not possible, so called unexpected-negative-intraoperative-cultures (UNIC). The purpose of this study was to evaluate alpha defensin (AD) levels in these patient populations. Methods. In this retrospective analysis of our prospectively maintained biobank, we evaluated synovial AD levels from 143 rTKAs. The 2018-Musculoskeletal Infection Society score (MSIS) was used to define our study groups. Overall, 20 rTKA with UPIC with a minimum of one positive intraoperative culture with MSIS 2-≥6 and 14 UNIC samples with MSIS≥6 were compared to 34 septic culture-positive samples (MSIS ≥6) and 75 aseptic culture-negative (MSIS 0–1) rTKAs. Moreover, we compared the performance of both AD-lateral-flow-assay (ADLF) and an enzyme-linked-immunosorbent-assay (ELISA) to test the presence of AD in native and centrifuged synovial fluid. Concentration of AD determined by ELISA and ADLF methods, as well as microbiological, and histopathological results, serum and synovial parameters along with demographic factors were considered. Results. AD was detected in 31/34 (91.2%) samples from the infected-group and in 14/14 (100%) samples in the UNIC group. All UPIC samples showed a negative AD result. Positive AD samples were highly (p<0.001) associated with culture positive and infection related histopathological results. Moreover, we found significantly (p=0.001) more high-virulent
Aim. Bone and joint infections (BJIs) are serious infections requiring early optimized antimicrobial therapy. BJIs can be polymicrobial or caused by fastidious bacteria, and the patient may have received antibiotics prior to sampling, which may decrease the sensitivity of culture-based diagnosis. Furthermore, culture-based diagnosis can take up to 14 days. Molecular approaches can be useful to overcome these concerns. The BioFire® system performs syndromic multiplex PCR in 1 hour, with only a few minutes of sample preparation. The BioFire® Joint Infection (JI) panel (BF-JI), recently FDA-cleared, detects both Gram-positive (n=15) and Gram-negative bacteria (n=14), Candida, and eight antibiotic resistance genes directly from synovial fluids. The aim of this study was to evaluate its performance in acute JIs in real-life conditions. Method. BF-JI was performed on synovial fluid from patients with clinical suspicion of acute JI, either septic arthritis or periprosthetic JI, in 6 French centers. The results of BF-JI were compared with the results of culture of synovial fluid and other concomitantly collected osteoarticular samples obtained in routine testing in the clinical microbiology laboratory. Results. From July 2021 to May 2022, 319 patients (including 10 children < 5y and 136 periprosthetic infections) had been included in the study. The BF-JI test was invalid for one patient (not retested). Among the 318 remaining patients, overall concordance with comparative microbiology methods was 88% (280/318): 131 samples were negative with both BF-JI and culture, and 149 samples were positive with the same
Aims. Achievement of accurate microbiological diagnosis prior to revision is key to reducing the high rates of persistent infection after revision knee surgery. The effect of change in the
Aim. Treatment recommendations for periprosthetic joint infections (PJI) include surgical debridement, antibiotic therapy or staged revision. In surgical related foot and ankle infections (SR-FAI), implant removal will lead to instability. Debridement is difficult because the implant is outside the joint. Recommendations regarding PJI treatment can therefore not be extrapolated to the treatment of SR-FAI. Method. We searched PubMed for the etiology and treatment of SR-FAI, taken into account the time of occurrence, causative
Aim. Fast and accurate identification of pathogens causing periprosthetic joint infections (PJI) is essential to initiate effective antimicrobial treatment. Culture-based approaches frequently yield false negative results, despite clear signs of infection. This may be due to the use of general growth media, which do not mimic the conditions at site of infection. Possible alternative approaches include DNA-based techniques, the use of in vivo-like media and isothermal microcalorimetry (ITC). We developed a synthetic synovial fluid (SSF) medium that closely resembles the in vivo microenvironment and allows to grow and study PJI pathogens in physiologically relevant conditions. In this study we investigated whether the use of ITC in combination with the SSF medium can improve accuracy and time to detection in the context of PJI. Methods. In this study, 120 synovial fluid samples were included, aspirated from patients with clinical signs of PJI. For these samples microbiology data (obtained in the clinical microbiology lab using standard procedures) and next generation sequencing (NGS) data, were available. The samples were incubated in the SSF medium at different oxygen levels (21% O. 2. , 3% O. 2. and 0% O. 2. ) for 10 days. Every 24h, the presence of growth was checked. From positive samples, cultures were purified on Columbia blood agar and identified using MALDI-TOF. In parallel, heat produced by metabolically active
Aim. To date, no ultimate diagnostic gold standard for prosthetic joint infections (PJI) has been established. In recent years, next generation sequencing (NGS) has emerged as a promising new tool, especially in culture-negative samples. In this prospective study, we performed metagenomic analysis using 16S rRNA V3-V4 amplicon NGS in samples from patients with suspected PJI. Methods. A total of 257 (187 culture-negative (CN) and 70 culture-positive (CP)) prospectively collected tissues and sonication fluid from 32 patients (56 revisions) were included. 16S rRNA V3-V4 amplicons were sequenced using Illumina's MiSeq (California, USA) followed by bioinformatic analysis using nf-core/ampliseq pipeline. Results. We successfully sequenced 255 samples and detected a total of 105
Aims. The aim of this study was to assess the incidence the microbiological spectrum and clinical outcome of hip and knee revision arthroplasties with unexpected-positive-intraoperative-cultures (UPIC) at a single center with minimum follow up of 2 years. Methods. We retrospectively analyzed our prospectively maintained institutional arthroplasty registry. Between 2011 and 2020 we performed presumably aseptic rTHA (n=939) and rTKA (n= 1,058). Clinical outcome, re-revision rates and causes as well as the microbiological spectrum were evaluated. Results. In total, 219/939 (23.3%) rTHA and 114/ 1,058 (10.8%) rTKA had a UPIC (p<0.001). Single positive intraoperative cultures were found in 173/219 (78.9%) in rTHA and 99/114 (86.8%) in rTKA, whereas 46/219 (21.0%) rTHA and 15/114 (13.2%) rTKA had positive results in ≥2 intraoperative cultures. A total of 390
Aim. Unexpected negative-cultures (UNC) are a common diagnostic problem in periprosthetic joint infection (PJI) of the hip and knee when using culture-based methods. A novel molecular approach (MC)1 based on the identification of the vast majority of bacterial species in a single assay using species-specific bacterial interspacing region length polymorphisms and phylum-specific 16S rDNA sequence polymorphisms has demonstrated clinical utility in PJI diagnostics (1). In addition, MC provides an estimate of the leukocyte concentration in the specimen analysed. The aim of this retrospective, blinded study was to evaluate the performance of MC in identifying the microbiological content and determining the leukocyte count in synovial fluid (SF) collected from hip and knee revision arthroplasty cases with UNC. It was also assessed whether antibiotic treatment would have been changed if the result from MC had been known. Method. A total of 89 SF samples from 70 patients (43 female; 27 male) who underwent revision arthroplasty (14 hip; 75 knee) were included. Using European and Bone Joint Infection Society (EBJIS) criteria, 82 cases were classified as infected (77 UNC and 5 septic culture-positive controls), five as non-infected (aseptic culture-negative controls), and two as likely infected, but infected by clinical observation. MC was performed and evaluated together with SF parameters. Antibiotic treatment, clinical outcome, patient demographics and surgical details were analysed. Results. Overall, 29.1% (23/79) of UNC had a positive yield by MC, of which 2/23 (8.7%) had two
Aims. Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that
Aim. Diagnosing low-grade periprosthetic joint infections (PJI) can be very challenging due to low-virulent