Advertisement for orthosearch.org.uk
Results 1 - 20 of 238
Results per page:
Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 128 - 128
1 Jun 2018
Whiteside L
Full Access

When dealing with a flexion contracture, a surgeon first should consider all potential causes, specifically ligament contracture and osteophytes. Then consider the size of the femoral component and its position proximal to distal and also the posterior slope of the tibial component. Most knee flexion contractures are caused by osteophytes and tight ligaments, and once these problems are corrected, no further work needs to be done on the knee. So when the bone surface cuts are made, in general, little compensation is done in terms of positioning the femoral component proximal or distal, or in terms of sloping the tibial component (beyond the normal 3–4 degrees posterior slope), before the ligaments or osteophytes are managed. If the deep medial collateral ligament (MCL) and posterior portion of the superficial MCL are tight, a flexion contracture will almost always be present after the bone surfaces are finished. Once this is corrected with proper ligament releases and removal of osteophytes, then ligament balance and flexion contracture should be reassessed. In the very few cases that still have a flexion contracture, posterior capsule release should be done. Once this is finished, releasing the capsule from both the femur and the medial aspect of the tibia, then ligament balance is reassessed again. If flexion contracture still remains (<10% of cases), then the distal surface of the femur is resected another 4–6 mm, trial components are inserted, and flexion contracture is evaluated. If more bony resection is needed, then changing tibial slope from 4 degrees posterior slope to 0 degrees slope is another step that can be done to remove bone from extension space of the knee finally to achieve full extension. Virtually all flexion contractures, except those with severe contracture resulting from hamstring tightness, can be corrected with this method. In the valgus knee with flexion contracture, similar management is used. Knees that will not extend and remain tight on the lateral side usually are corrected with release of the posterior capsule and posterior portion of the iliotibial band. Just as on the lateral side, bone resection from the distal femur can be performed as a final effort to achieve full extension of the knee. It is worth reiterating that almost all flexion contractures are caused by ligament imbalance, and that over-resection of the distal femur at the start of these cases can easily result in hyperextension that is difficult to manage once ligaments have been balanced


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 8 - 8
1 Feb 2017
Lee H Ham D Lee J Ryu H Chang G Kim S Park Y
Full Access

Introduction. The range of motion (ROM) obtained after total knee arthroplasty (TKA) is an important measurement to evaluate the postoperative outcomes impacting other measures such as postoperative function and satisfaction. Flexion contracture is a recognized complication of TKA, which reduces ROM or stability and is a source of morbidity for patients. Objectives. The purpose of this study was to evaluate the influence of intra-operative soft tissue release on correction of flexion contracture in navigated TKA. Methods. This is prospective cohort study, 43 cases of primary navigation assisted TKA were included. The mean age was 68.3 ± 6.8 years. All patients were diagnosed with grade 4 degenerative arthritis in K-L grading system. The average preoperative mechanical axis deviation was 10.3° ± 5.3 and preoperative flexion contracture was 12.8° ± 4.8. All arthroplasties were performed using a medial parapatellar approach with patellar subluxation. First, medial release was performed, and posterior cruciate ligament was sacrificed. After all bone cutting was performed and femoral and tibial trials were inserted, removal of posterior femoral spur and capsular release were performed. The degree of correction of flexion contracture was evaluated and recorded with navigation. Results. After the medial soft tissue release, as a first step, the flexion contracture was recorded as 7.2° ± 4.3 and 4.1° ± 4.0 as varus. The second step, posterior cruciate ligament was sacrificed, the flexion contracture was recorded as 7.2° ± 4.4 and 5.5° ± 3.0 as varus. After posterior clearing procedure and capsular release, the flexion contracture was showed as 3.9° ± 1.2 and 1.4° ± 1.2 as varus. The final angles after cemented real implant were recorded as 3.3° ± 1.4 in flexion contracture, 0.9° ± 1.8 in varus. There were significant differences all steps except between medial release step and posterior cruciate sacrifice step and between posterior clearing step and final angle. Conclusions. The appropriate soft tissue balancing could correct flexion contracture intra-operatively. The medial release could correct the flexion contracture around 5° compared with preoperative flexion contracture, and posterior clearing procedure could improve further extension. However, the sacrifice of posterior cruciate ligament provided little effect on correction of the flexion contracture intra-operatively


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 94 - 94
1 Apr 2019
Osman A Tarabichi S Haidar F
Full Access

Introduction. Stiffness postTotal Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal- rotation of thetibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. Method. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normaltibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers. Results. The average degree of knee flexion contracture with normal rotation of the tibial component was 0.7±4.1° (range:-9 to 10), whereas after tibial internal rotation was 7.3±4.6° (range:-1 to 23)(P – value:0.001). The increase in the flexion contracture deformity was higher with PS spacer (7.18±2.61) than with CR spacers (5.22±2.05). Conclusion. The internal mal-rotation of the tibial component limits the ability of the tibia to externally rotate on the femur, thereby limiting full knee extension and leading to flexion contracture


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 53 - 53
1 May 2019
Lombardi A
Full Access

The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen preoperatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. The focus in the postoperative physiotherapy rehabilitation program continues toward the goal of full extension. Patients are instructed in appropriate stretching regimes. Patients are immobilised for the first 24 hours in full extension with plaster splints, such as with a modified Robert Jones dressing. This dressing is removed on postoperative day one. The patient is then placed in a knee immobiliser and instructed to wear it at bed rest, during ambulation and in the evening, only removing for ROM exercises. In cases of severe flexion deformity >30 degrees, patients are maintained in full extension for 3–4 weeks until ROM is begun. Patients are encouraged to use a knee immobiliser for at least the first 6 weeks postoperatively. Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and mid-flexion instability. The distal femoral resection should remove that amount of bone being replaced with metal. Attention should be directed at careful and meticulous balance of the soft tissues and release of the contracted posterior capsule with re-establishment of the posterior recess, which will correct the majority of flexion contractures. Inability to achieve ROM after TKA represents a frustrating complication for both patient and surgeon. Non-operative treatments for the stiff TKA include shoe lift in contralateral limb, stationery bicycle with elevated seat position, extension bracing, topical application of hand-held instruments to areas of soft tissue-dysfunction by a trained physical therapist over several outpatient sessions, and use of a low load stretch device. Manipulation under anesthesia is indicated in patients after TKA having less than 90 degrees ROM after 6 weeks, with no progression or regression in ROM. Other operative treatments range from a downsizing exchange of the polyethylene bearing to revision with a constrained device and low-dose irradiation in cases of severe arthrofibrosis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 107 - 107
1 Jan 2016
Onodera T Kasahara Y Seito N Nishio Y Kondo E Iwasaki N Majima T
Full Access

Introduction. The effect of the implant posterior condylar offset has recently generated much enthusiasm among researchers. Some reports were concerned about the relationship between the posterior condylar offset and an extension gap. However, the posterior condylar offset was measured in a flexed knee position or in reference to femoral anatomy alone. Posterior femoral condylar offset relative to the posterior wall of the tibia (posterior offset ratio; POR) is possibly the risk of knee flexion contracture associated with posterior femoral condylar offset after TKA. However, there are no reports concerning the relationship between POR and flexion contracture in vivo. The aim of this study is to evaluate the relationship between the measurement of POR and flexion contracture of the knee in vivo. Methods. Twenty-seven patients who underwent a primary total knee arthroplasty (PFC Sigma RP-F) were participated in the study. The lateral femoro-tibial angle (lateral FTA) was measured using lateral radiographs obtained by two procedures. Two procedures are applied to obtain true lateral radiographs of the lower extremities. (1) Full-length true lateral radiographs on standing, (2) True lateral radiographs in the prone position (Fig. 1A). ‘Posterior offset ratio’ was defined as Fig. 1B. Significant differences among groups were assessed using two-tailed Student's t-tests. Spearman's correlation analysis was performed to evaluate the relationship between lateral FTA and posterior offset ratio of patients. Results. The mean value of the POR on standing was 14.94 ± 7.53%. The mean value of flexion contracture of the knee on standing was 11.67 ± 9.21 degree and that in the prone position was 4.22 ± 6.17 degree (P = 0.001). The POR was negatively correlated with flexion contracture of the knee in all procedures with statistical significance (standing: r = 0.62, P = 0.0039; prone: r = 0.66, P = 0.0001) (Fig. 2). Discussion. We have evaluated flexion contracture by two procedures. The mean value of flexion contracture of the knee on standing was 11.67 ± 9.21 degree, whereas that in the prone position was 4.22 ± 6.17 degree. We surmised that this discrepancy occurred due to the flexor muscle tension on standing. In terms of the evaluation of posterior soft tissue tightness of the knee, muscle relaxation can be achieved in prone position is rather than standing position. Our study investigated the relationship between the posterior protrusions of the posterior condyle of the femur relative to the tibia (POR) and flexion contracture after TKA evaluated by two measurement procedures. POR is strongly correlated with flexion contracture evaluated by both measurement procedures. The value of POR of this implant in vitro was about 25% in previous study, whereas the mean value of POR in vivo was 14.94%, suggesting that POR in the flexion contracture knee relatively reduced because posterior soft tissue pushed femoral component anteriorly. Our result clearly showed that if posterior clearance is insufficient, flexion contracture occur due to posterior soft tissue tightness. In conclusion, POR after TKA in vivo negatively correlate with flexion contracture presumably because posterior soft tissue pushed femoral component anteriorly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 90 - 90
1 May 2016
Kawashima H Nakano S Yoshioka S Toki S Kashima M Nakamura M Chikawa T Kanematsu Y Sairyo K
Full Access

Flexion contracture sometimes occurs after primary total knee arthroplasty (TKA). In most cases, flexion contracture after TKA gradually improves over time. However, some severe cases require manipulation or revision surgery. We searched our clinical database for patients who underwent primary TKA at our institution between 2008 and 2015. By reviewing patient records, we identified three patients (one man and two women) with a severe flexion contracture 30° after primary TKA. Although all three patients gained more than 120° in flexion intraoperatively, they developed flexion contracture after discharge from our institution. We performed manipulation under anaesthesia (MUA) for all three cases several months later. The two female patients had improved range of motion (ROM) right after the manipulation. However, one of them regained flexion contracture 1 year after the MUA. We report the details of the male patient, who had the worst flexion contracture (−60°). An 80-year-old man had right knee osteoarthritis. His history indicated only hypertension. The right knee ROM before the TKA was −20° extension and 135° flexion. His radiographs showed advanced-stage osteoarthritis. We performed cemented TKA (posterior stabiliser design). Three weeks after the operation, his right knee pain improved. The right knee ROM was −10° extension and 100° flexion just before discharge. However, he returned to our institution because of right knee pain and flexion contracture 31 months after the surgery. The flexion contracture gradually worsened without any trauma. When he returned, the right knee ROM was −60° extension and 135° flexion. Manipulation under general anaesthesia was not effective. Therefore, we performed revision TKA immediately. We excised the scar tissue of the posterior knee joint. Then, we shortened the distal femoral end by 1 cm and reduced the size of the femoral component. After the operation, the right knee ROM was improved to −10° flexion and 130° extension. The reported prevalence of stiffness after TKA was from 1.3% to 13%. Although the deleterious effects of persistent flexion contractures > 15° is well understood, whether they resolve with time or need surgical intervention is controversial. MUA is generally the initial option for patients with flexion contractures, with the possibility of some improvement. If severe flexion contracture remains after manipulation, revision TKA, which may be considered as a useful treatment option, should be considered


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 104 - 104
1 Jun 2018
Lombardi A
Full Access

The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen pre-operatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. Avoiding Pitfalls and Complications: Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and mid-flexion instability. The distal femoral resection should remove that amount of bone being replaced with metal. Attention should be directed at careful and meticulous balance of the soft tissues and release of the contracted posterior capsule with re-establishment of the posterior recess, which will correct the majority of flexion contractures. Residual Flexion Contracture: Inability to achieve ROM after TKA represents a frustrating complication for both patient and surgeon. Non-operative treatments for the stiff TKA include shoe lift in contralateral limb, stationery bicycle with elevated seat position, extension bracing, topical application of hand-held instruments to areas of soft tissue-dysfunction by a trained physical therapist over several outpatient sessions, and use of a low load stretch device. Manipulation under anesthesia is indicated in patients after TKA having less than 90 degrees ROM after 6 weeks, with no progression or regression in ROM. Other operative treatments range from a downsizing exchange of the polyethylene bearing to revision with a constrained device and low-dose irradiation in cases of severe arthrofibrosis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 14 - 14
1 Oct 2020
Mayman DJ Elmasry SS Chalmers BP Sculco PK Kahlenberg C Wright TE Westrich GH Imhauser CW Cross MB
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture. However, the effect of joint line proximalization on TKA kinematics is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on knee extension and mid-flexion laxity. Methods. Six computational knee models with TKA-specific capsular and collateral ligament properties were implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled to simulate a capsular contracture. Distal femoral resections of +2 mm and +4 mm were simulated for each model. The knees were then extended under standardized torque to quantify additional knee extension achieved. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, +2 mm, and +4 mm distal resections. Coronal laxity, defined as the sum of varus and valgus angulation with respective torques, was measured at mid-flexion. Results. With +2 mm and +4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively. At 30° and 45°of flexion, baseline laxity averaged 4.8° and 5.0°, respectively. At +2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At +4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively. Maximal increased coronal laxity for a +4 mm resection occurred at a mean 16° (range, 11–27°) of flexion with a mean increased laxity of 7.8° from baseline. Conclusion. While additional distal femoral resection in primary TKA increases knee extension, the consequent joint line elevation induces up to 8° of coronal laxity in mid-flexion in this computational model. As such, posterior capsular release prior to resecting additional distal femur to correct a flexion contracture should be considered


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 24 - 24
1 Apr 2018
Adi MM Abdelnasser MK Haidar F Osman A Tarabichi S
Full Access

Introduction. Stiffness post Total Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal-rotation of the tibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. Method. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normal tibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers. Results. The average degree of knee flexion contracture with normal rotation of the tibial component was 0.7±4.1° (range: −9 to 10), whereas after tibial internal rotation was 7.3±4.6° (range: −1 to 23) (P – value:0.001). The increase in the flexion contracture deformity was higher with PS spacer (7.18±2.61) than with CR spacers (5.22±2.05). Conclusion. The internal mal-rotation of the tibial component limits the ability of the tibia to externally rotate on the femur, thereby limiting full knee extension and leading to flexion contracture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity. Methods. Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline. Results. With 2 mm and 4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively (Figure 2). No significant difference was found between the extension angle predicted by the six models and the results of the cadaveric study after 2 mm (p= 0.71) and 4 mm (p= 0.47). At 2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At 4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively (Figures 3a and 3b). The flexion angle corresponding to the greatest increase in coronal laxity for 2 mm of distal resection occurred at 22±7° of flexion with a mean increase in laxity of 4.0° from baseline. For 4 mm distal resection, the greatest increase in coronal laxity occurred at 16±6° of flexion with a mean increase in laxity of 7.8° from baseline. Conclusion. A TKA computational model representing a knee with preoperative flexion contracture was developed and corroborated measures from a previous cadaveric study [1]. While additional distal femoral resection in primary TKA increases passive knee extension, the consequent joint line elevation induced up to 8° of additional coronal laxity in mid-flexion. This additional midflexion laxity could contribute to midflexion instability; a condition that may require TKA revision surgery. Further studies are warranted to understand the relationship between joint line elevation, midflexion laxity, and instability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 15 - 15
1 Feb 2017
Higashi H Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T Jonishi K Yoshii H
Full Access

Objective. In a cruciate retaining total knee arthroplasty (CR-TKA) for patients with flexion contracture, to ensure that an extension gap is of sufficient size to install an implant, the amount of distal femur bone resection needed is frequently larger in a patient with knee flexion contracture than in one without contracture. In this study, we compared the distal femur bone resection amount, the component-secured extension gap margin value, and the range of motion at 6 months after surgery between patients with knee flexion contracture and those without knee flexion contracture. Method. We examined 51 joints including 27 joints in patients with preoperative extension limitation of less than 5 degrees (the F0 group) and 24 joints in patients with limitation of 15 degrees or larger (up to 33 degrees; the FC group) who underwent CR-TKA with LCS RP (DePuy Synthes) between May 2013 and April 2014. In case with an extension gap 3 mm or smaller than the flexion gap after initial bone resection, we released posterior capsule adequately, trying to minimize the distal femur additional bone resection amount as possible. With installation of a femoral trial, the component gaps were measured using spacer blocks. The measured parameters included the intraoperative bone resection length, gap difference (FG − EG, i.e., difference between the flexion gap [FG] and extension gap [EG]), and range of motion 6 months after surgery. Results. No inter-group difference was found in the length of the distal femur bone initially resected in the medial side of distal femur(F0: 6.7 ± 1.3 mm, FC: 6.1 ± 1.4 mm) and total length of bone resection (= first + additional resection) in the lateral proximal tibia (F0: 10.3 ± 1.9 mm, FC: 10.4 ± 2.1 mm). The length of the additional distal femur bone resected was 0.9 ± 1.3 mm in the F0 and 1.5 ± 1.2 mm in the FC (P = 0.06; Mann-Whitney U). The FG-EG (F0: 0.7 ± 0.9 mm, FC: 0.6 ± 0.8 mm) showed no remarkable inter-group difference. The mean range of motion was changed from −2.3° to −0.6° at extension and from 130.4° to 128.7° at flexion in the F0 and from −19.8° to −2.7° at extension and from 113.7° to 122.3° at flexion in the FC. Conclusions. The amount of distal femur bone resected should not be simply increased because this may elevate the joint line, narrow the flexion range, and cause the joint instability in mid-flexion. The results of this study show that, in CR-TKA for patients with flexion contracture up to 30°, the length of distal femoral bone resection of approximately 1 mm larger than that in patients without contracture may ensure an extension gap of necessary and sufficient length to install an implant


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 89 - 89
23 Feb 2023
Marasco S Gieroba T Di Bella C Babazadeh S Van Bavel D
Full Access

Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 47 - 47
1 Oct 2020
Ryan S Wu C Plate J Seyler T Bolognesi M Jiranek W
Full Access

Introduction. The Center for Medicare and Medicaid Services (CMS) is faced with a challenge of decreasing the cost of care for total knee arthroplasty (TKA), but must make efforts to prevent patient selection bias in the process. Currently, no appropriate modifier codes exist for primary TKA based on case complexity. We sought to determine differences in perioperative parameters for patients with “complex” primary TKA with the hypothesis that they would require increased cost of care, prolonged care times, and have worse postoperative outcome metrics. Methods. We performed a single center retrospective review from 2015 to 2018 of all primary TKA. Patient demographics, medial proximal tibial angle (mPTA), lateral distal femoral angle (lDFA), flexion contracture, cost of care, and early postoperative outcomes were collected. ‘Complex’ patients were defined as those requiring stems or augments, and multivariable logistic regression analysis and propensity score matching were performed to evaluate perioperative outcomes. Results. 1046 primary TKA were studied and 84 patients (8.3%) were classified as “complex”. For this cohort, surgery duration was greater (117 vs 82 minutes; p<0.001), cost of care excessive (p<0.001), and patients had a greater likelihood for 90-day hospital return. Deviation of mPTA and lDFA was significantly greater preoperatively before and after propensity score matching. Cutpoint analysis demonstrated that preoperative mPTA <83o or >91o, lDFA <84o or >90o, flexion contracture >10o, and BMI > 35.7 were associated with ‘Complex’ procedures. Conclusions. Complex primary TKA may be identifiable preoperatively and are associated prolonged operative time, excess hospital cost of care and increased 90-day hospital returns. This should be considered in future reimbursement models to prevent patient selection bias, and a complexity modifier is warranted


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 115 - 115
2 Jan 2024
Akbar M Crowe L Woolcock K Cole J McInnes I Millar N
Full Access

Dupuytren's disease (DD) is a fibroproliferative soft tissue disease affecting the palmar fascia of the hand causing permanent and irreversible flexion contracture. Aberrant fibrosis is likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in soft tissue fibrosis in diseases such as DD is not well established. Therefore, we conducted a comprehensive multi-omic study investigating the epigenetic profiles that influence gene expression in DD pathology. Using control (patients undergoing carpal tunnel release) and diseased fibroblasts (patients undergoing Dupuytren's fasciectomy), we conducted ATAC-seq to assess differential chromatin accessibility between control and diseased fibroblasts. Additionally, ChIP-seq mapped common histone modifications (histone H4; H3K4me3, H3K9me3, H3K27me3, H4K16Ac, H4K20Me3) associated with fibrosis. Furthermore, we extracted RNA from control and DD tissue and performed bulk RNA-seq. ATAC-seq analysis identified 2470 accessible genomic loci significantly more accessible in diseased fibroblasts compared to control. Comparison between diseased and control cells identified numerous significantly different peaks in histone modifications (H4K20me3, H3K27me3, H3K9me3) associated with gene repression in control cells but not in diseased cells. Pathway analysis demonstrated a substantial overlap in genes being de-repressed across these histone modifications (Figure 1). Both, ATAC-seq and ChIP-seq analysis indicated pathways such as cell adhesion, differentiation, and extracellular matrix organisation were dysregulated as a result of epigenetic changes. Moreover, de novo motif enrichment analysis identified transcription factors that possibly contributed to the differential gene expression between control and diseased tissue, including HIC1, NFATC1 and TEAD2. RNA-seq analysis found that these transcription factors were upregulated in DD tissue compared to control tissue. The current epigenetic study provides insights into the aberrant fibrotic processes associated with soft tissue diseases such as DD and indicates that epigenetic-targeted therapies may be an interesting viable treatment option in future. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 90 - 90
1 Mar 2013
Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T
Full Access

Introduction. In TKA, it is important to make the equal extension and flexion gap (EG and FG) of the knee. Although, this principal concept applies to all knees, flexion contracture is known to have difficulties to achieve the equal EG and FG because of its smaller EG than usual. Whereas, it is also well known that PCL resection makes FG wider than EG, however, many surgeons recommend PCL resection in case of flection contracture because it is easy to manage during surgery, nevertheless the risk of further gap unbalance. Although, flexion contracture is not rare in TKA, the controversial problem of the PCL resection for the flexion contracture still remains even in today. Materials and methods. To investigate this contradiction, we measured intra-operative EG and FG of the knee with 20 degree or more pre-operative flexion contracture. The gaps were measured by 3 different ways; a tension device system with 30 and 40 pound tension (group 1 and 2) and a spacer block system which had 1 mm increment thickness variation (group 3). The cases were 41, 46 and 51 knees in group 1, 2 and 3 respectively. Group 1 and 2 have overlapping in 27 knees. Results. In our hospital, femoral posterior condylar 4 mm pre-cut is routinely used, so the data of the FG was corrected by the amount of pre-cut. After usual distal femoral cut and tibial cut and the femoral posterior condylar pre-cut, EG and FG before PCL resection were 16.2±2.7 and 20.3±3.3 mm / 17.7±4.0 and 22.2±3.8 mm / 15.3±4.0 and 18.7±2.8 mm in group 1, 2 and 3 respectively. Group 3 showed smaller gaps than group 1 and 2 and group 1 showed smaller than group 2. EG was significantly smaller than FG in all groups (p<0.001). The difference between both gaps was 4.1±3.2, 4.4±3.9 and 3.4±3.7 mm in group 1, 2 and 3 respectively. Nevertheless the different measurement methods, the results were similar among 3 groups. To avoid additional widening of the gap difference due to PCL resection, CR components were implanted with 84 knees and PS with 27 knees. Discussion. Although, the gap measurement methods are often discussed about their reliabilities, how much distraction force is necessary with the tension device systems and how accurate measurement is possible with the spacer block systems are obscure. Our results showed some different results among 3 groups, however, the EG was apparently smaller than the FG and the difference between EG and FG was similar among 3 groups. PS component is usually selected in TKA in patients with flexion contracture, especially with severe contracture because it is easy to manage during surgery without PCL. The purpose of TKA is to make adequate EG and FG, however, our results indicated the risk of severe unbalance between EG and FG when the PCL was resected in every knee with flexion contracture. Regardless of the measurement methods, intra-operative estimation of the difference between EG and FG is important, especially in the knees with flexion contracture


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 578 - 579
1 Nov 2011
Yang S Hamdy R Dahan-Oliel N
Full Access

Purpose: Arthrogryposis Multiplex Congenita is a rare congenital disorder associated with multiple musculo-skeletal contractures which causes substantial morbidity. Knee involvement is commonly seen among children with arthrogryposis, with flexion contracture of the knee being the most frequent knee deformity. Knee flexion contractures in the paediatric population are particularly debilitating as they affect ambulation. Treatment for knee flexion contractures requires numerous orthopaedic procedures and an extensive follow-up period. The purpose of this study was to assess the effectiveness of orthopaedic procedures, namely distal femoral extension osteotomy and/or Ilizarov external fixator, on the ambulation status of children with knee flexion contracture. Method: The medical records and radiological images of 16 paediatric patients with arthrogryposis and knee flexion contractures were reviewed. The etiology of all of them was amyoplasia except for one case of popliteal pterygium. The mean age of first surgery was 6.2 years (age range: 1–15 years). The mean length of follow-up was 83.9 months. All patients’ knee flexion contractures were treated with femoral extension osteotomy, Ilizarov external fixator, or both. Two patients previously had posterior soft tissue releases, including hamstrings lengthenings, proximal gastrocnemius release, and release of posterior capsule. Results: Prior to the initial surgery for knee flexion contracture, 13 patients were non-ambulatory. One patient was a household ambulator with flexed knees. Two patients walked with orthoses. There was an average of 1.8 surgeries done per patient, namely distal femoral extension osteotomy and/or Ilizarov external fixator. At the latest follow-up, 12 patients were ambulatory, including 11 children ambulating with technical aids (orthosis, walker, braces, or rollator walker) and one child ambulating without any technical aid. Four patients remained non-ambulatory. The mean total arc of motion was 64.8 degrees preoperatively, 63.1 degrees postoperatively, and 52.8 degrees at the latest follow-up. A mean loss of 6.8 degrees per year in total arc of motion occurred. There were complications in four patients which consist of infected hardware, transient neurological compromise, cast change, and pressure sore. Conclusion: Surgical correction of knee flexion deformities by distal femoral extension osteotomy and/or Ilizarov external fixator was effective in improving the ambulation status of children with arthrogryposis. At latest follow-up, the gradual loss of total arc of motion did not impact the ambulatory gains made by these procedures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 40 - 40
1 May 2012
S. Y R. H N. D
Full Access

Background. Arthrogryposis Multiplex Congenita is a rare congenital disorder associated with multiple musculoskeletal contractures which causes substantial morbidity. Knee involvement is commonly seen among children with arthrogryposis, with flexion contracture being the most frequent. The purpose of this study was to assess the effectiveness of orthopaedic procedures, namely distal femoral supracondylar extension osteotomy and/or Ilizarov external fixator, on the ambulation status of children with knee flexion contracture and whether any functional gains are maintained at the latest follow-up. Methods. Fifteen patients were identified and their medical records reviewed. The mean age at their first surgery was 7.6 years (range, 2-16 years). The etiology for all patients was amyoplasia. The mean length of follow-up was 58 months (range, 12-117 months). Contractures were treated with femoral extension osteotomy (n=8), Ilizarov external fixator (n=2), or both (n=5). Results. Pre-operatively, 11 patients were non-ambulatory, three patients were household ambulators, and one patient walked with orthoses in the community. There was an average of 1.5 knee surgeries done per patient. At the latest follow-up, nine patients were ambulatory with technical aids, two patients were household ambulators, one patient used a wheelchair but was independent for transfers, and three patients remained non-ambulatory. The mean flexion contracture prior to the first surgery was 62.8 ± 26.7 degrees. Post-operatively, the mean flexion contracture was 13.5 ± 16.4 degrees. At the latest follow-up, the mean flexion contracture was 33.8 ± 23.6 degrees. There were complications in three patients which included infected hardware, transient neurological compromise, and pressure sores, which eventually all resolved. Conclusion. early and aggressive orthopaedic management of flexion contractures in children with arthrogryposis is supported by our findings, and may contribute to functional gains


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 31 - 31
1 Mar 2017
Moya-Angeler J Bas M Cooper J Hepinstall M Rodriguez J Scuderi G
Full Access

Introduction. A stiff total knee arthroplasty (TKA) is an uncommon but disabling problem because it causes pain and limited function. Revision surgery has been reported as a satisfactory treatment option for stiffness with modest benefits. The aim of this study was to evaluate the results of revision surgery for the treatment of stiffness after TKA. Methods. We defined stiffness as 15 degrees or more of flexion contracture or less than 75º of flexion or a range of motion of 90º or less presenting with a chief complain of limited range of motion and pain. We evaluated the results of forty-two revisions performed by one of four orthopedic surgeons due to stiffness after TKA. Patients with history of infection or isolated polyethylene insert exchange were excluded. Results. Patients were followed for an average of forty-seven months. The mean Knee Society score improved from 43.9 points preoperatively to 72.0 points at the time of follow-up and the mean Knee Society function score from 48.7 to 70.1 respectively. Pain improved in 73% of the patients and four patients (9.5%) presented severe pain at latest follow up. The mean flexion contracture decreased from 9.7º to 2.3º, the mean flexion improved from 81.5º to 94.3º, and the mean range of motion improved from 72º to 92º. The range of motion improved in 80% of the knees and flexion increased in 64.3%. Extension improved in 88% and it remained unchanged in 5%. Conclusion. Revision surgery appears to be a reasonable option for patients presenting with pain and stiffness after TKA. However, the benefits may be modest as the outcomes do not approach those achieved with a primary TKA. Although the flexion contractures were significantly improved and 80% of the knees presented an increase range of motion, the final range of motion was only 92º