Aims. The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal
Advances in orthopaedic surgery have led to minimally invasive techniques to decrease patient morbidity by minimizing surgical exposure, but also limits direct visualization. This has led to the increased use of intraoperative fluoroscopy for fracture management. Unfortunately, these procedures require the operating surgeon to stay in close proximity to the patient, thus being exposed to radiation scatter. The current National Council on Radiation Protection recommends no more than 50 mSv of radiation exposure to avoid ill-effects. Risks associated with radiation exposure include cataracts, skin, breast and thyroid cancer, and leukemia. Despite radiation protection measures, there is overwhelming evidence of radiation-related diseases in orthopaedic surgeons. The risk of developing cancer (e.g. thyroid carcinoma and breast cancer) is approximately eight times higher than in unexposed workers. Despite this knowledge, there is a paucity of evidence on radiation exposure in orthopaedic surgery residents, therefore the goal of this study is to quantify radiation exposure in orthopaedic surgery residents. We hypothesize that orthopaedic surgery residents are exposed to a significant amount of radiation throughout their training. We specifically aim to: 1) quantify the amount of radiation exposure throughout a Canadian orthopaedic residency training program and 2) determine the variability in resident radiation exposure by rotation assignment and year of training. This ongoing prospective cohort study includes all local orthopaedic surgery residents who meet eligibility criteria. Inclusion criteria: 1) adult residents in an orthopaedic surgery residency program. Exclusion criteria: 1) female residents who are pregnant, and 2) residents in a non-surgical year (i.e. leave of absence, research, Masters/PhD). After completion of informed consent, each eligible resident will wear a
Purpose: The use of radiology is integral to Orthopaedic Trauma surgery and there has been increasing dependence on image intensifiers in the operating room. A study was undertaken to assess the radiation exposure of the surgeon. Methods: One full time orthopaedic trauma surgeon has worn a
Introduction: The increasing popularity of minimal access surgery in orthopaedic surgery has resulted in increasing use of intra-operative fluoroscopy. The radiation dose received by the surgeon varies from procedure to procedure depending on several factors such as duration of procedure, direct exposure to radiation beam and distance from the radiation source. In particular hand and wrist injuries often involve direct fluoroscopic exposure to the hands of the surgeon and assistant during the procedure. Aim: We undertook a prospective study to directly evaluate the exposure of the surgeon’s and assistant’s hands and thyroid glands during K-wiring procedures of the hand and wrist. In addition we evaluated the efficacy of a lead thyroid shield in limiting the radiation dose to the thyroid gland. In addition we undertook a questionnaire of orthopaedic surgeons and trainees in Ireland to assess the availability of thyroid shields and current practice in wearing them. Method A total of 30 cases were evaluated.
Background: There is increased concern regarding radiation exposure to surgeons using fluoroscopic guidance throughout various procedures. However, relatively little information exists on the level of radiation exposure to the foot and ankle surgeon during fluoroscopically assisted foot and ankle surgery. Methods: We are conducting an ongoing proespective study to measure radiation exposure to the hands of a single orthopaedic foot and ankle surgeon (RD). Over a 12-month period, thermoluminescent
Background: There is increasing concern regarding radiation exposure to surgeons’ using fluoroscopic guidance during orthopaedic procedures. However, there is currently a paucity of information regarding the level of radiation exposure to the foot and ankle surgeon during fluoroscopically assisted foot and ankle surgery. Methods: We conducted a 12 month prospective study to measure radiation dose absorbed by the hands of a dedicated right handed foot and ankle surgeon. A thermo-luminescent
The availability and usage of portable image intensifiers has revolutionised routine orthopaedic practice. Many procedures have become simpler, easier, less invasive and less time-consuming. Extensive use of fluoroscopy can, however, result in significant radiation exposure to operating staff. An accumulated dose of 65 (Sv after multiple exposures has been reported to increase the risk of thyroid cancer many years later. Previous studies have shown that it is possible to exceed this dose during various orthopaedic procedures. Though thyroid shields are extensively available most orthopaedic surgeons do not use them. The present study was aimed at measuring the scattered dose to thyroid during DHS/IMHS for neck of femur fractures and IM nailing for long bone fractures and thereby emphasise the need for operating theatre personnel to wear a thyroid shield. A prospective study of 32 consecutive procedures was carried out. The EDD Unfors
Surgeons working in orthopaedic operating theatres are exposed to significant noise pollution due to the use of powered instruments. This may carry a risk of noise-induced hearing loss (NIHL). This study was designed to quantify the noise exposure experienced by orthopaedic surgeons and establish whether this breaches occupational health guidelines for workplace noise exposure. A sound
Purpose: Accurate measurement of dynamic joint motion remains a clinical challenge. To address this problem, we have developed a low-dose clinical procedure using the Roentgen Single-plane Photogrammetric Analysis (RSPA) technique. A validation study was performed in a clinical setting, using a conventional digital flat-panel radiography system. Method: To validate the technique, three experiments were performed: assessment of static accuracy, dynamic repeatability and measurement of effective dose. A knee joint phantom, imbedded with tantalum markers, was utilized for the experiments. Relative spatial positions of the markers were reconstructed using Radiostereometric Analysis (RSA). A digital flat-panel radiography system was used for image acquisition, and the three-dimensional pose of each segment was determined from single-plane projections by applying the RSPA technique. All images were processed using software developed in-house. To assess static accuracy, the phantom was mounted onto a three-axis translational stage and moved through a series of displacements ranging from 0 to 500 μm. Images of the phantom were acquired at each position. Accuracy was calculated by analyzing differences between reconstructed and applied displacements. To assess dynamic repeatability, the phantom was mounted on a six-axis robot, programmed to apply a flexion-extension movement to the joint. Multiple cine acquisitions of the moving phantom were acquired (30 fps, 4 ms exposure). Repeatability was calculated by analyzing the variation between motions reconstructed from repeated acquisitions. The effective dose of the procedure was measured using an ion-chamber
Purpose of the study: Recent studies have shown that the incidence of certain cancers would be due to ionising radiation received during diagnostic radiological explorations. It is thus important to optimise dosimetry. In this context, slot scanners have demonstrated potential for generating images with a quality comparable with conventional systems but with a considerable reduction in dose. We wanted to verify this proposition. Material and method: Radiographs were obtained in 50 scoliosis patients (posteroanterior and lateral incidences) using the slot scanner (EOS, Biospace) and with a conventional machine (FCR-7501S, Fuji). A
Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote Within the present study, we evaluated whether this promising new method, using 99mTc-hydroxydiphosphonate (99mTc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with 99mTc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured.Objectives
Methods