Aims. Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor
The cement in
The cement in
Study Aims The purpose of this study is to determine whether the cement mantle produced when a suction
To evaluate the results critically of cemented total hip arthroplasty using a fourth generation
Aim: The purpose of this study was to report our experience mid to long-term results of hybrid cement fixation in revision total knee arthroplasty. Methods: Patients who underwent revision total knee arthroplasty using a hybrid
Purpose. Glenoid component loosening is a common reason for failed total shoulder arthroplasty. Multiple factors have been suggested as causes for component loosening that may be related to
Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line
Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone
Purpose: Cement implantation syndrome characterized by hypotension, hypoxemia, cardiac arrhythmia or arrest has been reported in the literature. Pulmonary embolization is thought to be the main reason. In our institute, however, we have not experienced major hypotension during THA. To improve longevity of THA, interface bioactive bone
Background. Cement implantation syndrome characterized by hypotension, hypoxemia, cardiac arrhythmia or arrest has been reported in the literature. The purpose of the present study was to monitor blood pressure soon after cementing. Methods. The present study includes 178 cases 204 joints of primary THA with an average age at operation of 64.5 years old (ranging 35 to 89). Under general anesthesia, both components were cemented using antero-lateral approach. Systolic arterial blood pressure during cementing acetabular and femoral components was monitored until 5 minutes with 1 minute interval. The maximum regulation ratio (MRR) was calculated as (maximum change blood pressure – blood pressure before cement insertion) divided by blood pressure before cement insertion. Results. No major complications such as cardiac arrest were observed. In most of the cases, blood pressure increased until 4 minutes for the acetabular side and 2 minutes for the femoral side, and then returned to the blood pressure before cement insertion gradually. In the acetabular side, average MRR was 11.2% (SD, 15.9; range, −26 to 80). In the femoral side, MRR was 6.4% (SD, 14.9; range, −31 to 65). There was statistical correlation between categories of MRR in the acetabular side and age at operation, the status of bleeding control of the acetabular side. When the bleeding control was judged as complete, blood pressure showed less tendency to decrease. When the bleeding control was judged as good, blood pressure showed more tendency to decrease. Conclusion. In the present study, major hypotension was not observed. Using third generation and IBBC
Improved
INTRODUCTION. we have previously reported that bone preparation is quite precise and accurate relative to a preoperative plan when using a robotic arm assisted technique for UKA. However, in that same study, we found a large variation between intended and final tibial implant position, presumably occuring during cement curing. In this study, we reviewed a subsequent cohort of patients in which the tibial and femoral components were cemented individually with ongoing evaluation of tibial component position during cement curing. METHODS AND MATERIALS. Group 1 comprised the simultaneous cementing techniquegroup of patients, previously reported on, although their x-rays were re-analyzed. Group 2 consisted of the individual
We have used Interface Bioactive Bone Cement (IBBC) in all cases of total joint arthroplasties since 1987. The method is improved
Revision of the femoral component during revision hip arthroplasty may pose significant technical challenges, most notably femoral fracture and bone perforation. The in-cementing technique allows use of the original bone-cement interface which has been proven to be biomechanically stronger than recementing after complete removal of the original cement mantle. This study reviews a series of 54 consecutive revision hip arthroplasty procedures carried out by the senior author using the in-cementing technique from November 1999 to March 2003. Patients were followed up clinically and radiologically with serial outpatient reviews and their functional outcome was assessed using the Harris hip scoring system, the Oxford hip scoring system and the University of California at Los Angeles (UCLA) activity profile. Their physical and mental well-being was also assessed using the SF-36 self-questionnaire. Fifty-four procedures were performed on 51 patients. There were 31 males and 20 females. The average age was 70.3+/-8.1 years (range: 45-83 years). The average time to revision from the original procedure was 132.8+/-59.0 months (range: 26-286 months). The average length of follow-up was 29.2+/-13.4 months (range: 6-51 months) post revision arthroplasty. Two patients suffered dislocations, one of which was recurrent and was revised with a Girdlestone's procedure. No patient displayed any evidence of radiographical loosening. The average Harris hip score of the study group was 85.2+/-11.6 (range: 51.9-98.5). The average Oxford hip score recorded was 19.6+/-7.7 (range: 12-41) and the average UCLA activity profile score was 5.9+/-1.6 (range: 3-8). The SF-36 questionnaire had an average value of 78.0+/-18.3 (range: 31.6-100). In conclusion, the results of this study show excellent clinical and radiological results of the in-cementing technique with high patient satisfaction in terms of functional outcome. This technique merits consideration where possible in revision hip arthroplasty.
Aims. The main objective of this study is to analyze the penetration of bone cement in four different full
Abstract. Introduction. Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA) and this has been linked to poor
The use of endoprosthesis implants is frequent for tumours involving the proximal third of the femur and not amenable to primary arthroplasty or internal fixation. In this population, these implants are preferentially cemented given poor bone quality associated with systemic diseases and treatments. Loosening is a common complication of these implants that have been linked to poor bone quality, type of implants and importantly
Background. The acknowledged benefit of the direct anterior (DA) approach is early functional return. Most surgeons in the U.S. use cementless femoral replacement given the negative track record of some cemented designs. However, delayed osseointegration of a femoral stem typically seen in older patients with poor bone quality will delay recovery, diminishing the benefits of the DA approach. Registry studies have shown a higher revision rate and complications in this patient population leading to a renewed interest in cemented fixation. Questions posed. To achieve the functional benefits of the DA approach and the fixation benefits of cemented replacement, this study combined the 2 techniques posing the following questions:1) Does the limited access of the DA approach adversely affect the
Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and