Advertisement for orthosearch.org.uk
Results 1 - 20 of 247
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 160 - 160
1 Mar 2009
Bell D Gothelf T Goldberg J Harper W Pelletier M Yu Y Walsh W
Full Access

Introduction: A cosmetic deformity does not always occur after a biceps tenotomy. The anatomical restraints preventing distal excursion of the long head of biceps tendon following tenotomy have not previously been described. This study aims to evaluate the biceps sheath and its potential role as a restraint to distal excursion of the biceps following tenotomy. Methods: Fifteen fresh cadaveric specimens were dissected free of overlying soft tissues to reveal the rotator cuff, biceps sheath and long head of biceps muscle belly and tendon. Eight specimens were used for gross anatomical analysis. Measurements of the length of the biceps sheath on the humeral (bone) side and tendon side were made using a digital caliper (Mitutoyo, Japan). The long head of biceps tendon was then released from the glenoid labrum and the excursion of the stump relative to the rim of the articular surface measured. The biceps sheaths of two specimens were used for histological analysis. Seven specimens were used for mechanical analysis. A humeral osteotomy was performed distal to the insertion of pectoralis major, leaving intact the biceps sheath and the muscle belly of long head of biceps. The proximal humerus was attached to a custom-designed jig and the muscle belly of biceps grasped in cryogenic grips. Specimens were loaded on an MTS 858 Bionix mechanical testing machine (MTS Systems, MN) in uniaxial tension at a rate of 1 mm/sec until failure was observed. Results: The biceps sheath surrounds the long head of biceps tendon and inserts into the bone of the proximal humerus. It is trapezoidal in cross-section, with a mean length of 75.1 mm on the bone side and 49.3 mm on the tendon side. The average excursion of the stump was to within 2.8 mm of the rim of the articular surface. Histological examination of the biceps sheath revealed membranous tissue consisting of loose soft tissue with fat and blood vessels. Synovial tissue was also identified. The sheath was seen to loosely attach to the biceps tendon, with a more intimate attachment to the periosteum. The mean force to pull the long head of biceps tendon out of the sheath 102.7 N (range 17.4 N–227.6 N). Discussion: The biceps sheath is a consistent structure intimately associated with the biceps tendon. It appears to contain blood vessels which provide nutrition to the tendon, similar to the vincula of flexor digitorum pro-fundus. Mechanical testing reveals that a substantial force is sometimes required to pull the biceps tendon from the sheath. This may explain why biceps tenotomy does not routinely result in a “Popeye” biceps


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 18 - 18
1 Aug 2020
Goetz TJ Mwaturura T Li A
Full Access

Previous studies describing drill trajectory for single incision distal biceps tendon repair suggest aiming ulnar and distal (Lo et al). This suggests that the starting point of the drill would be anterior and radial to the anatomic insertion of the distal biceps tendon. Restoration of the anatomic footprint may be important for restoration of normal strength, especially as full supination is approached. To determine the safest drill trajectory for preventing injury to the posterior interosseous nerve (PIN) when repairing the distal biceps tendon to the ANATOMIC footprint through a single-incision anterior approach utilising cortical button fixation. Through an anterior approach in ten cadaveric specimens, three drill holes were made in the radial tuberosity from the centre of the anatomic footprint with the forearm fully supinated. Holes were made in a 30º distal, transverse and 30º proximal direction. Each hole was made by angling the trajectory from an anterior to posterior and ulnar to radial direction leaving adequate bone on the ulnar side to accommodate an eight-millimetre tunnel. Proximity of each drill trajectory to the PIN was determined by making a second incision on the dorsum of the proximal forearm. A K-wire was passed through each hole and the distance between the PIN and K-wire measured for each trajectory. The PIN was closest to the trajectory K-wires drilled 30° distally (mean distance 5.4 mm), contacting the K-wire in three cases. The transverse drill trajectory resulted in contact with the PIN in one case (mean distance 7.6 mm). The proximal drill trajectory appeared safest with no PIN contact (mean distance 13.3 mm). This was statistically significant with a Friedman statistic of 15.05 (p value of 0.00054). When drilling from the anatomic footprint of the distal biceps tendon the PIN is furthest from a drill trajectory aimed proximally. The drill is aimed radially to minimise blowing out the ulnar cortex of the radius. For any reader inquiries, please contact . vansurgdoc@gmail.com


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 83 - 83
1 Nov 2016
Saithna A Longo A Leiter J MacDonald P Old J
Full Access

Recent literature has demonstrated that conventional arthroscopic techniques do not adequately visualise areas of predilection of pathology of the long head of biceps (LHB) tendon and are associated with a 30–50% rate of missed diagnoses. The aim of this study was to evaluate the safety, effectiveness and ease of performing biceps tenoscopy as a novel strategy for reducing the rate of missed diagnoses. Five forequarter amputation cadaver specimens were studied. The pressure in the anterior compartment was measured before and after surgical evaluation. Diagnostic glenohumeral arthroscopy was performed and the biceps tendon was tagged to mark the maximum length visualised by pulling the tendon into the joint. Biceps tenoscopy was performed using 3 different techniques (1. Flexible video-endoscopy, 2. Standard arthroscopy via Neviaser portal. 3. Standard arthroscope via antero-superior portal with retrograde instrumentation). Each was assessed for safety, ease of the procedure and whether the full length of the extra-articular part of the LHB tendon could be visualised. The t-test was used to compare the length of the LHB tendon visualised at standard glenohumeral arthroscopy vs that visualised at biceps tenoscopy. An open dissection was performed after the arthroscopic procedures to evaluate for an iatrogenic injury to local structures. Biceps tenoscopy allowed visualisation to the musculotendinous junction in all cases. The mean length of the tendon visualised was therefore significantly greater at biceps tenoscopy (104 mm) than at standard glenohumeral arthroscopy (33 mm) (mean difference 71 mm, p<0.0001). Biceps tenoscopy was safe with regards to compartment syndrome and there was no difference between pre- and post-operative pressure measurements (mean difference 0 mmHg, p=1). No iatrogenic injuries were identified at open dissection. Biceps tenoscopy allows excellent visualisation of the entire length of the LHB tendon and therefore has the potential to reduce the rate of missed diagnoses. This study did not demonstrate any risk of iatrogenic injury to important local structures or any risk of compartment syndrome. Clinical evaluation is required to further validate this technique


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 9 - 9
1 Mar 2010
ElMaraghy AW
Full Access

Purpose: Complete distal biceps tendon ruptures (DBTRs) require prompt surgical management for optimal functional and aesthetic outcome. Waiting for confirmatory diagnostic imaging can often delay timely surgical referral of these injuries. The need exists for a valid and reliable diagnostic tool to expedite appropriate referrals for surgery. Method: Based on the hypothesis that complete distal biceps tendon rupture leads to an objectively measurable increase in the “biceps crease interval” (BCI) due to proximal retraction of the musculotendinous complex, three independent examiners established “normal” biceps crease intervals (N-BCI) for 80 males (average age = 43 years) with no history of biceps injury. Given acceptable inter-rater reliability (ICC > 0.70), a mean N-BCI value was established and a normal biceps crease ratio (N-BCR) between right and left arms was calculated. Correlations with arm dominance, biceps circumference, and age were determined. Diagnostic N-BCI and N-BCR thresholds were applied to 23 consecutive patients presenting with a possible complete DBTR to determine the diagnostic value of the BCI Test. A definitive diagnosis was confirmed at surgery and/or by radiographic imaging. Results: The BCI Test had acceptable inter-rater reliability (ICC= 0.794, p = < 0.001). The mean N-BCI for both dominant and non-dominant arms was 4.8 +/− 0.6 cm. The mean N-BCR was 1.0 +/− 0.1. Applied to an injured population, using a diagnostic threshold of two standard deviations above “normal” values (BCI > 6.0 cm, BCR > 1.2), the BCI Test had a sensitivity of 92% and a diagnostic accuracy of 93%. Conclusion: The BCI Test is an objective, valid and reliable test that can be used by clinicians to facilitate rapid diagnosis and surgical referral of suspected complete DBTRs


Bone & Joint Open
Vol. 3, Issue 10 | Pages 826 - 831
28 Oct 2022
Jukes C Dirckx M Bellringer S Chaundy W Phadnis J

Aims. The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. Methods. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis. Results. Four videos were excluded, leaving 57 for final analysis. Mechanisms of injury included deadlift, bicep curls, calisthenics, arm wrestling, heavy lifting, and boxing. In all, 98% of ruptures occurred with the arm in supination and 89% occurred at 0° to 10° of elbow flexion. Regarding muscle activity, 88% occurred during isometric contraction, 7% during eccentric contraction, and 5% during concentric contraction. Interobserver correlation scores were calculated as 0.66 to 0.89 using the free-marginal Fleiss Kappa tool. The prospectively collected patient data was consistent with the video analysis, with 82% of injuries occurring in supination and 95% in relative elbow extension. Conclusion. Contrary to the classically described injury mechanism, in this study the usual arm position during DBTR was forearm supination and elbow extension, and the muscle contraction was typically isometric. This was demonstrated for both video analysis and ‘real’ patients across a range of activities leading to rupture. Cite this article: Bone Jt Open 2022;3(10):826–831


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 35 - 35
4 Apr 2023
Teo B Yew A Tan M Chou S Lie D
Full Access

This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an ex vivo ovine model. Fourteen fresh sheep shoulder specimens were used in this study. Dissection was performed leaving only the biceps muscle attached to the humerus and proximal radius before sharply incised to simulate long head of biceps tendon (LHBT) tear. Repair of the LHBT tear was performed on all specimens using either DSLA or IS technique. Cyclical loading of 500 cycles followed by load to failure was performed on all specimens. Tendon displacement due to the cyclical loading at every 100 cycles as well as the maximum load at failure were recorded and analysed. Stiffness was also calculated from the load displacement graph during load to failure testing. No statistically significant difference in tendon displacement was observed from 200 to 500 cycles. Statistically significant higher stiffness was observed in IS when compared with DSLA (P = .005). Similarly, IS demonstrated significantly higher ultimate failure load as compared with DSLA (P = .001). Modes of failure observed for DSLA was mostly due to suture failure (7/8) and anchor pull-out (1/8) while IS resulted in mostly LHBT (4/6) or biceps (2/6) tears. DSLA failure load were compared with previous studies and similar results were noted. After cyclical loading, tendon displacement in DLSA technique was not significantly different from IS technique. Despite the higher failure loads associated with IS techniques in the present study, absolute peak load characteristics of DLSA were similar to previous studies. Hence, DLSA technique can be considered as a suitable alternative to IS fixation for biceps tenodesis


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives. The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results. Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion. These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 36 - 36
14 Nov 2024
Zderic I Kraus M Rossenberg LV Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Tendon ruptures are a common injury and often require surgical intervention to heal. A refixation is commonly performed with high-strength suture material. However, slipping of the thread is unavoidable even at 7 knots potentially leading to reduced compression of the sutured tendon at its footprint. This study aimed to evaluate the biomechanical properties and effectiveness of a novel dynamic high-strength suture, featuring self-tightening properties. Method. Distal biceps tendon rupture tenotomies and subsequent repairs were performed in sixteen paired human forearms using either conventional or the novel dynamic high-strength sutures in a paired design. Each tendon repair utilized an intramedullary biceps button for radial fixation. Biomechanical testing aimed to simulate an aggressive postoperative rehabilitation protocol stressing the repaired constructs. For that purpose, each specimen underwent in nine sequential days a daily mobilization over 300 cycles under 0-50 N loading, followed by a final destructive test. Result. After the ninth day of cyclic loading, specimens treated with the dynamic suture exhibited significantly less tendon elongation at both proximal and distal measurement sites (-0.569±2.734 mm and 0.681±1.871 mm) compared to the conventional suture group (4.506±2.169 mm and 3.575±1.716 mm), p=0.003/p<0.002. Gap formation at the bone-tendon interface was significantly lower following suturing using dynamic suture (2.0±1.6 mm) compared to conventional suture (4.5±2.2 mm), p=0.04. The maximum load at failure was similar in both treatment groups (dynamic suture: 374± 159 N; conventional suture: 379± 154 N), p=0.925. The predominant failure mechanism was breakout of the button from the bone (dynamic suture: 5/8; conventional suture: 6/8), followed by suture rupturing, suture unraveling and tendon cut-through. Conclusion. From a biomechanical perspective, the novel dynamic high-strength suture demonstrated higher resistance against gap formation at the bone tendon interface compared to the conventional suture, which may contribute to better postoperative tendon integrity and potentially quicker functional recovery in the clinical setting


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 64 - 64
4 Apr 2023
Hartland A Islam R Teoh K Rashid M
Full Access

There remains much debate regarding the optimal method for surgical management of patients with long head of biceps pathology. The aim of this study was to compare the outcomes of tenotomy versus tenodesis. This systematic review and meta-analysis was registered on PROSPERO (ref: CRD42020198658). Electronic databases searched included EMBASE, Medline, PsycINFO, and Cochrane Library. Randomized controlled trials (RCTs) comparing tenotomy versus tenodesis were included. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and the Jadad score. The primary outcome included patient reported functional outcome measures pooled using standardized mean difference (SMD) and a random effects model. Secondary outcome measures included pain (visual analogue scale VAS), rate of Popeye deformity, and operative time. 860 patients from 11 RCTs (426 tenotomy vs 434 tenodesis) were included in the meta-analysis. Pooled analysis of all PROMs data demonstrated comparable outcomes between tenotomy vs tenodesis (SMD 0.14, 95% CI −0.04 to 0.32; p=0.13). Sensitivity analysis comparing RCTs involving patients with and without an intact rotator cuff did not change the primary outcome. There was no significant difference for pain (VAS). Tenodesis resulted in a lower rate of Popeye deformity (OR 0.29, 95% CI 0.19 to 0.45, p < 0.00001). Tenotomy demonstrated a shorter operative time (MD 15.21, 95% CI 1.06 to 29.36, p < 0.00001). Aside from a lower rate of cosmetic deformity, tenodesis yielded no measurable significant benefit to tenotomy for addressing pathology in the long head of biceps. A large multi-centre clinical effectiveness randomised controlled trial is needed to provide clarity in this area


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 38 - 38
23 Feb 2023
Ernstbrunner L Almond M Rupasinghe H Jo O Zbeda R Ackland D Ek E
Full Access

The extracortical single-button (SB) inlay repair is one of the most preferred distal biceps tendon repair techniques. However, specific complications such as neurovascular injury and non-anatomic repairs have led to the development of techniques that utilize intracortical double-button (DB) fixation. To compare the biomechanical stability of the extracortical SB repair with the anatomical DB repair technique. Controlled laboratory study. The distal biceps tendon was transected in 18 cadaveric elbows from 9 donors. One elbow of each donor was randomly assigned to the extracortical SBor anatomical DB group. Both groups were cyclically loaded with 60N over 1000 cycles between 90° of flexion and full extension. The elbow was then fixed in 90° of flexion and the repair construct loaded to failure. Gap-formation and construct stiffness during cyclic loading, and ultimate load to failure was analysed. After 1000 cycles, the anatomical DB technique compared with the extracortical SB technique showed significantly less gap-formation (mean difference 1.2 mm; p=0.017) and significantly more construct stiffness (mean difference 31 N/mm; p=0.023). Ultimate load to failure was not significantly different comparing both groups (SB, 277 N ±92 vs. DB, 285 N ±135; p=0.859). The failure mode in the anatomical DB group was significantly different compared with the extracortical SB technique (p=0.002) and was due to fracture avulsion of the BicepsButton in 7 out of 9 specimens (vs. none in SB group). Our study shows that the intracortical DB technique produces equivalent or superior biomechanical performance to the SB technique. The DB repair technique reduces the risk of nerve injury and better restores the anatomical footprint of biceps tendon. The DB technique may offer a clinically viable alternative to the SB repair technique


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 576 - 576
1 Dec 2013
Wang C Wong T
Full Access

Background:. Massive rotator cuff tear can cause functional disability due to instability and degenerative changes of the shoulder joint. In patients with massive irreparable rotator cuff tear, tendon transfer is often used as the salvage procedure. Latissimus dorsi and pectoris major transfer are technically demanding procedures and may incur complications. The biceps tendon transfer may provide a biologically superior tissue patch that improves the biomechanics of the shoulder joint in patients with irreparable rotator cuff tear. This study evaluated the functional outcomes of biceps tendon transfer for irreparable rotator cuff tear in 6 patients with two years and longer follow-up. Methods:. Between September 2006 and October 2011, 50 patients with 50 shoulders underwent surgical repair for MRI confirmed rotator cuff tear. Among them, six patients with massive irreparable rotator cuff tear were identified intraoperatively, and underwent proximal biceps tendon transfer to reconstruct the rotator cuff tear. The biceps tendon was tenodesed at the bicipital groove, and the proximal intra-articular portion of the biceps tendon was transected. The biceps graft was fanned out and the distal end fixed to the cancellous trough around the greater tuberosity with suture anchor. The anterior edge was sutured to the subscapularis and the posterior edge to the infraspinatus tendon or supraspinatus if present. Postoperative managements included sling protection and avoidance of strenuous exercises for 6 weeks, and then progressive rehabilitation until recovery. Results:. The evaluation parameters included VAS pain score, UCLA score, Constant score and AHES score, and X-rays of the shoulder. At follow-up of 25.3 ± 25.0 (range 22 to 63) months, the mean VAS pain score decreased from 9.3 ± 0.8 preoperatively to 1.7 ± 1.4 postoperatively (p < 0.001). All patients presented with significant improvements in pain and function of the shoulder for daily activities after surgery, however, only one patient achieved excellent results. There is no correlation of functional outcome with age, gender and body mass index. There was no infection or neurovascular complication. Discussion:. The biceps transfer provides soft tissue coverage of the humeral head, and restores the superior stability of the shoulder joint. The transferred biceps tendon also improves the mechanics and increases the compression force of the humeral head to the glenoid fossa. The results of the current study showed significant pain relief and improvement of shoulder function after biceps tendon transfer for irreparable rotator cuff tear. Conclusion:. Biceps tendon transfer is effective in the management of massive irreparable rotator cuff tear. The procedure is technically accessible with minimal surgical risks


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 35 - 35
1 Nov 2021
Hartland A Islam R Teoh K Rashid M
Full Access

Introduction and Objective. There remains much debate regarding the optimal method for surgical management of patients with long head of biceps pathology. The aim of this study was to compare the outcomes of tenotomy versus tenodesis. Materials and Methods. This systematic review and meta-analysis was registered on PROSPERO (ref: CRD42020198658). Electronic databases searched included EMBASE, Medline, PsycINFO, and Cochrane Library. Randomized controlled trials (RCTs) comparing tenotomy versus tenodesis were included. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and the Jadad score. The primary outcome included patient reported functional outcome measures pooled using standardized mean difference (SMD) and a random effects model. Secondary outcome measures included visual analogue scale (VAS), rate of cosmetic deformity (Popeye sign), range of motion, operative time, and elbow flexion strength. Results. 751 patients from 10 RCTs demonstrated (369 tenotomy vs 382 tenodesis) were included in the meta-analysis. Pooled analysis of all PROMs data demonstrated comparable outcomes between tenotomy vs tenodesis (SMD 0.17 95% CI −0.02 to 0.36, p=0.09). Sensitivity analysis comparing RCTs involving patients with and without an intact rotator cuff did not change the primary outcome. Secondary outcomes including VAS, shoulder external rotation, and elbow flexion strength did not reveal any significant difference. Tenodesis resulted in a lower rate of Popeye deformity (OR 0.27 95% CI 0.16 to 0.45, p<0.00001). Conclusions. Aside from a lower rate of cosmetic deformity, tenodesis yielded no measurable significant benefit to tenotomy for addressing pathology in the long head of biceps. This finding was irrespective of the whether the rotator cuff was intact


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 153 - 153
1 May 2012
Goldberg J Walsh W Chen D
Full Access

The diagnosis and treatment of disorders of the long head of the biceps tendon remains controversial. There is uncertainty as to the role of the long head of biceps and it can be difficult to determine whether the patient's pathology is coming from the biceps or other adjacent structures. In addition, the appropriate type of treatment remains controversial. We retrospectively reviewed the files of the senior author's experience in over 4000 arthroscopic shoulder procedures. We examined cases involving isolated biceps pathology, excluding those patients with rotator cuff tears and labral pathology, involving 92 biceps tenotomies and 103 biceps tenodeses. Our analysis supports the benefit of clinical examination over all types of radiological investigations. The benefits and technique of biceps tenodesis is described including surgical technique. Irritation by PLA interference screw is examined. A paradigm is put forward to help in diagnosis and management of these lesions. Long head of biceps pathology is a significant cause of shoulder pain in association with other shoulder problems and in isolation. Biceps tenodesis and tenotomy is an efficacious way of dealing with this pathology


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 34 - 34
1 Mar 2021
MacDonald P Woodmass J McRae S Verhulst F Lapner P
Full Access

Management of the pathologic long-head biceps tendon remains controversial. Biceps tenotomy is a simple intervention but may result in visible deformity and subjective cramping. Comparatively, biceps tenodesis is technically challenging, and has increased operative times, and a more prolonged recovery. The purpose of this study was to determine the incidence of popeye deformity following biceps tenotomy versus tenodesis, identify predictors for developing a deformity, and compare subjective and objective outcomes between those that have one and those that do not. Data for this study were collected as part of a randomized clinical trial comparing tenodesis versus tenotomy in the treatment of lesions of the long head of biceps tendon. Patients 18 years of age or older with an arthroscopy confirmed biceps lesion were randomized to one of these two techniques. The primary outcome measure for this sub-study was the rate of a popeye deformity at 24-months post-operative as determined by an evaluator blinded to group allocation. Secondary outcomes were patient reported presence/absence of a popeye deformity, satisfaction with the appearance of their arm, as well as pain and cramping on a VAS. Isometric elbow flexion and supination strength were also measured. Interrater reliability (Cohen's kappa) was calculated between patient and evaluator on the presence of a deformity, and logistic regression was used to identify predictors of its occurrence. Linear regression was performed to identify if age, gender, or BMI were predictive of satisfaction in appearance if a deformity was present. Fifty-six participants were randomly assigned to each group of which 42 in the tenodesis group and 45 in the tenotomy group completed a 24-month follow-up. The incidence of popeye deformity was 9.5% (4/42) in the tenodesis group and 33% (15/45) in the tenotomy group (18 male, 1 female) with a relative risk of 3.5 (p=0.016). There was strong interrater agreement between evaluator and patient perceived deformity (kappa=0.636; p<0.001). Gender tended towards being a significant predictor of having a popeye with males having 6.6 greater odds (p=0.090). BMI also tended towards significance with lower BMI predictive of popeye deformity (OR 1.21; p=0.051). Age was not predictive (p=0.191). Mean (SD) satisfaction score regarding the appearance of their popeye deformity was 7.3 (2.6). Age was a significant predictor, with lower age associated with decreased satisfaction (F=14.951, adjusted r2=0.582, p=0.004), but there was no association with gender (p=0.083) or BMI (p=0.949). There were no differences in pain, cramping, or strength between those who had a popeye deformity and those who did not. The risk of developing a popeye deformity was 3.5 times higher after tenotomy compared to tenodesis. Male gender and lower BMI tended towards being predictive of having a deformity; however, those with a high BMI may have had popeye deformities that were not as visually apparent to an examiner as those with a lower BMI. Younger patients were significantly less satisfied with a deformity despite no difference in functional outcomes at 24 months. Thus, biceps tenodesis may be favored in younger patients with low BMI to mitigate the risk of an unsatisfactory popeye deformity


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 21 - 21
1 Jul 2014
Romeo A
Full Access

The functional importance of the long head of biceps tendon remains controversial, but it is well accepted as an important source of anterior shoulder pain. Both biceps tenotomy and tenodesis have well-documented results in the native shoulder. Management of the long head of biceps tendon during shoulder arthroplasty remains controversial. The existing literature supports surgical treatment of the biceps during shoulder arthroplasty. Walch et al. reported the largest series in multicenter study of over eight hundred shoulder arthroplasty patients with or without biceps tenodesis. The authors found more reproducible pain relief with biceps tenodesis and no difference in range of motion. Similarly, Soliman et al. reported on a prospective review of 37 patients undergoing hemiarthroplasty for fracture randomly assigned to biceps tenodesis vs. no treatment. The authors found a statistically significant improvement in Constant score and shoulder pain with biceps tenodesis. If left untreated during shoulder arthroplasty, the intact biceps tendon may be a source of anterior shoulder pain requiring revision surgery. Tuckman et al. reported excellent pain relief after biceps tenotomy or tenodesis for biceps-related pain after previous shoulder arthroplasty. The decision to perform a biceps tenotomy versus a tenodesis during shoulder arthroplasty also remains controversial. Tenotomy may increase the risk of cosmetic pop-eye deformity and muscle cramping or fatigue over tenodesis. Therefore, routine long head of biceps soft tissue tenodesis is recommended during shoulder arthroplasty as it safe, reproducible, cost-effective, associated with improved outcome scores, and minimises the risk of cosmetic deformity and pain associated with biceps tenotomy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 5 - 5
1 Nov 2016
Galatz L
Full Access

Total shoulder arthroplasty is becoming increasingly common. A biceps tenodesis or tenotomy has become a routine part of the operation. There are several advantages to a tenodesis or tenotomy. First, the long head of the biceps tendon is routinely pathologic. One study has shown that there are differences in gene expression and mechanical properties in the long head of the biceps tendon in the setting of glenohumeral joint arthritis. Clinically, we often see inflammation, tearing, adhesions, or other pathology. Second, it is largely accepted that the long head of the biceps tendon has minimal function at the shoulder. The biceps muscle primarily functions at the elbow. Therefore, there is little downside to performing a tenodesis if there is a chance of it generating pain after surgery. Another major reason to perform a tenodesis or a tenotomy is that the technique of total shoulder arthroplasty requires a subscapularis takedown or lesser tuberosity osteotomy. The ligaments and tendon associated with the subscapularis contribute to the stability of the biceps tendon and after subscapularis takedown, it is unlikely that the tendon would remain reduced in the groove. In addition, it is part of a technique to incise and release the rotator interval, additionally creating scarring and/or instability associated with the biceps tendon. Given those reasons, this is a very common and reasonable routine part of the procedure of total shoulder arthroplasty


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 133 - 133
1 Mar 2006
Singh R Roberts M Persaud I Sinha J Standring S
Full Access

The purpose of the study was to define the anatomy of the distal biceps tendon and it’s attachment to the proximal radius (bicipital tuberosity). Distal ruptures of the biceps tendon are not uncommon. Surgical treatment needs an understanding of the precise anatomy of the distal biceps tendon and it’s insertion; of which there are no reports in the literature. Eighty cadaver elbows were dissected. Six were damaged, hence they were excluded from the study. The skin over the cadaver elbows was removed. The distal biceps tendon was dissected and followed to it’s insertion on to the bicipital tuberosity. Measurements of tendon dimensions were taken at the elbow joint and at it’s insertion. The whole distal biceps tendon twists in a predictable manner. The tendon fibres too change orientation. The tendon inserts on the posterior margin of the bicipital tuberosity in a thin C-shaped manner. All the biceps insertions had a significantly large bursa associated with it. Both the biceps tendon and it’s intra-tendinous fibres twist. This has biomechanical implications. The dimensions of the biceps tendon at the elbow and at it’s insertion affect the biomechanics. The insertion into bone in a thin C shaped fashion has connotations on methods of repair


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 349 - 350
1 Jul 2011
Psychoyios VN Intzirtzis P Thoma S Bavellas V Dakis K
Full Access

Chronic distal biceps tendon rupture is a relatively uncommon situation with difficulties in treatment. Surgical treatment with allograft has been described in the literature with varying results. The purpose of this study was to describe 9 cases of chronic distal biceps tendon rupture which have been treated in our unit with local soft tissue as a graft. All patients were male with an average age of 54 years. The mean interval between tendon rupture and reconstruction was 11 months. In all patients a flap from lacertus fibrosus was used in continuation with the remnants of the tendon. The flap was entubulated and advanced to the bicipital tuberocity. The biceps was released and mobilized as necessary. In addition, 3 patients underwent a fractional lengthening of the muscle. All procedures were performed through a single anterior approach. Anchors and anchor sutures were used to stabilize the tendon to the tuberocity. The mean follow up was 3 years. No complications were encountered except for a superficial infection which resolved with oral antibiotics. All patients returned to their previous occupation. Furthermore, they all achieved 5/5 muscle strength regarding flexion and supination on manual testing. According to the Mayo Elbow performance score, the results were excellent in 8 patients, and fair in one. We believe that the aforementioned technique is useful in treating chronic biceps ruptures. It requires no additional cost and also the risk, even if marginal, of transmitting diseases with allografts, such Achilles tendon is avoided. Furthermore, the possibility of rerupture is minimal compared to the techniques using allograft or free autografts, since a revascularisation process during which the risk for failure is high does not take place as in other types of allografts


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 161 - 161
1 Apr 2005
Haridas* S Curtis C Caterson B Evans R Dent C
Full Access

Aim: To study mRNA expression in ruptured biceps tendon. Methods: Our study was carried out in the University College of Medicine. We took the biceps tendon of 5 patients who had traumatic ruptures. The age of the patients ranged from 35–53. The tendons were processed for RNA isolation and reverse-transcription-polymerase chain reaction (RT-PCR) carried out in order to investigate the mRNA gene expression in ruptured biceps tendon of extra cellular matrix (ECM) components (e.g. proteoglycans and collagens); ECM degradative components (e.g. aggrecanases and MMPs); inflammatory components (e.g. cytokines and cyclooxygenases); and factors involved in the apoptotic response. Results: Our results showed that in the samples of ruptured biceps tendon there was a good mRNA expression of ECM structural components, especially aggrecan and the small proteoglycans biglycan and decorin. Interestingly, these samples also showed a high expression for the enzymes commonly involved in articular cartilage degradation and turnover, the aggrecanases (ADAMTS-4 and –5) and the matrix metalloproteinases (MMP-3 and –13). As has been recently reported for Achilles tendon rupture (Cetti et al, 2003), an inflammatory reaction was also observed in these ruptured bicep tendons with expression of the inflammatory cytokines IL-1α and TNFα and the enzyme cyclooxygenase-2. Conclusion: We know clinically that patients can rupture their biceps tendon either due to trauma if not due to degenerative conditions. In our study we wanted to know if the subset of patients who ruptured their tendons traumatically had any pre-existing degenerative conditions leading on to the rupture compared to the normal subjects. Interestingly our study has shown that there is mRNA expression of degradative enzymes (aggrecanases and MMPs) in the samples of ruptured biceps tendon. Whether these mRNA levels equate to increased enzyme activity of these molecules warrants further investigation. Furthermore, our samples also showed mRNA expression for factors involved in the inflammatory response. In conclusion, mRNA expression of the factors involved in degradation and inflammation may suggest a phenotype that predisposes the bicep tendon to rupture, although further studies are required in order to investigate this further


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_8 | Pages 5 - 5
1 May 2021
Carter TH Karunaratne BJ Oliver WM Murray IR Reid JT White TO Duckworth AD
Full Access

Acute distal biceps tendon repair reduces fatigue-related pain and minimises loss of forearm supination and elbow flexion strength. We report the short- and long-term outcome following repair using an EndoButton technique. Between 2010 – 2018, 102 patients (101 males; mean age 43 years) underwent acute (□6 weeks) distal biceps tendon repair using an EndoButton technique. The primary short-term outcome was complications. The primary long-term outcome was the Quick-DASH (Q-DASH). Secondary outcomes included the Oxford Elbow Score (OES), EuroQol-5D-3L (EQ-5D), return to function and satisfaction. At mean short-term follow-up of 4 months (2.0 – 55.5) eight patients (7.8%) experienced a major complication and 34 patients (33.3%) experienced a minor complication. Major complications included re-rupture (n=3, 2.9%), unrecovered nerve injury (n=4, 3.9%) and surgery for heterotopic ossification excision (n=1, 1.0%). Three patients (2.9%) required surgery for a complication. Minor complications included neuropraxia (n=27, 26.5%) and superficial infection (n=7, 6.9%). At mean follow-up of 5 years (1 – 9.8) outcomes were collected from 86 patients (84.3%). The median Q-DASH, OES, EQ-5D and satisfaction scores were 1.2 (IQR 0 – 5.1), 48 (IQR, 46 – 48), 0.80 (IQR, 0.72 – 1.0) and 100/100 (IQR, 90 – 100) respectively. Most patients returned to sport (82.3%) and employment (97.6%) following surgery. Unrecovered nerve injury was associated with a poor outcome according to the Q-DASH (p< 0.001), although re-rupture and further surgery were not (p > 0.05). Acute distal biceps tendon repair using an EndoButton technique results in excellent patient reported outcomes and health-related quality of life. Although rare, unrecovered nerve injury adversely affects outcome