Introduction and Objective. Forced external rotation is hypothesized as the key mechanism of syndesmotic ankle injuries. This complex trauma pattern ruptures the syndesmotic ligaments and induces a three-dimensional deviation from the normal distal tibiofibular joint configuration. However, current diagnostic imaging modalities are impeded by a two-dimensional assessment, without taking into account ligamentous stabilizers. Therefore, our aim is two-fold: (1) to construct an articulated statistical shape model of the normal ankle with inclusion of ligamentous morphometry and (2) to apply this model in the assessment of a clinical cohort of patients with syndesmotic ankle injuries. Materials and Methods. Three-dimensional models of the distal tibiofibular joint were analyzed in asymptomatic controls (N= 76; Mean age 63 +/− 19 years), patients with syndesmotic ankle injury (N = 13; Mean age 35 +/− 15 years), and their healthy contralateral equivalent (N = 13). Subsequently, the statistical shape model was generated after aligning all ankles based on the distal tibia. The position of the syndesmotic ligaments was predicted based on previously validated iterative shortest path calculation methodology. Evaluation of the model was described by means of accuracy, compactness and generalization. Canonical Correlation Analysis was performed to assess the influence of syndesmotic lesions on the distal tibiofibular joint congruency. Results. Our presented model contained an accuracy of 0.23 +/− 0.028 mm. Mean prediction accuracy of ligament insertions was 0.53 +/− 12 mm. A statistically significant difference in anterior syndesmotic distance was found between ankles with syndesmotic lesions and healthy controls (95% CI [0.32, 3.29], p = 0.017). There was a significant correlation between presence of syndesmotic injury and the morphological distal tibiofibular configuration (r = 0.873, p <0,001). Conclusions. In this study, we constructed a bony and ligamentous statistical model representing the distal tibiofibular joint Furthermore, the presented model was able to detect an elongation injury of the
Background: Injuries to ankle joint consist 12% of visits to emergency departments. In spite of the common occurrence of ankle sprain, syndesmosis injuries are rare, but very debilitating and frequently misdiagnosed. Methods: Among 100 patients with ankle sprain we evaluated the incidence of syndesmosis sprain by MRI of the ankle. Adults who had acute ankle sprain with no fracture and examined on the same day that injury had took place were being included in the survey. Results: Out of 100 patients with ankle injury, four had syndesmosis sprain. Three patients had partial tear of syndesmotic complex and one had complete tear. All injuries occurred in sports except one which had happened in an accident, and two of the patients were athletes.
Introduction: Ankle sprain is one of the common presentations in Accident and Emergency. Accurate diagnosis is critical and sometime difficult without special investigation such as Magnetic Resonance Imaging (MRI) or arthroscopy. Aim: The purpose of this project was to evaluate magnetic resonance imaging (MRI) accuracy for diagnosing and defining ankle pathology. Method: Retrospective review of 36 patients who underwent both MRI and Arthroscopy. All cases were seen by single orthopaedic surgeon with special interest in foot and ankle surgery. MRI scan were reviewed by consultant radiologist at our institute. Arthroscopy was used as a standard for comparing MRI results. Sensitivity and Specificity was calculated by qualified statistician. Results: For osteochondral lesion the Sensitivity of 85.7 %, Specificity of 93.3% and Accuracy of 89.7% was noticed. Anterior and posterior tibiofibular ligament (ATFL and PTFL) pathology had a Sensitivity of 100 %, Specificity of 100% and Accuracy of 100%, while
Purpose. The
Ankle sprains have been shown to be the most common sports related injury. Ankle sprain may be classified into low ankle sprain or high ankle sprain. Low ankle sprain is a result of lateral ligament disruption. It accounts for approximately 25% of all sports related injuries. The ankle lateral ligament complex consists of three important structures, namely the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL) and posterior talofibular ligament (PTFL). The ATFL is the weakest and most easily injured of these ligaments. It is often described as a thickening of the anterolateral ankle capsule. The ATFL sits in a vertical alignment when the ankle is plantarflexed and thus is the main stabiliser against an inversion stress. T he CFL is extracapsular and spans both the tibiotalar and talocalcaneal joints. The CFL is vertical when the ankle is dorsiflexed. An isolated injury to the CFL is uncommon. Early diagnosis, functional management and rehabilitation are the keys to preventing chronic ankle instability following a lateral ligament injury. Surgery does not play a major role in the management of acute ligament ruptures. Despite this up to 20% of patients will develop chronic instability and pain with activities of daily living and sport especially on uneven terrain. Anatomic reconstruction for this group of patients is associated with 90% good to excellent results. It is important that surgery is followed by functional rehabilitation. One of the aims of surgery in patients with recurrent instability is to prevent the development of ankle arthritis. It should be noted that the results of surgical reconstruction are less predictable in patients with greater than 10 year history of instability. Careful assessment of the patient with chronic instability is required to exclude other associated conditions such as cavovarus deformity or generalised ligamentous laxity as these conditions would need to be addressed in order to obtain a successful outcome. High ankle sprain is the result of injury to the syndesmotic ligaments. The distal tibiofibular joint is comprised of the tibia and fibula, which are connected by