Reconstructing severe acetabular defects in revision total hip arthroplasty remains a challenge. When bulk allografts are used alone to support components, high failure rates are reported within five years. But satisfying results are obtained in most cases when a reinforcement cage and cement are used in combination with bulk allograft. This video demonstrates a technique used at Anderson Orthopaedic Institute that employs an anti-protrusio acetabular support ring with particulate allograft. Considered a salvage procedure, the approach provides an option when a hemispheric acetabular component cannot be adequately placed or properly positioned on host bone. It is recommended for low-demand, elderly patients or those with multiple failures in which no other reconstruction alternative is viable. The partial-pelvic reconstruction ring used in this case has a caudal flange. It comes in multiple sizes and also has flexible flanges that can be contoured to the ilium. The caudal flange secures fixation to the ischium. The
Acetabular components of total hip joint replacement (THJR) in previously irradiated pelvis show high rates of failure. We present a literature review and a retrospective series evaluating the survival of
Pathologic fractures about the hip are an uncommon, but increasingly prevalent, clinical scenario encountered by orthopaedic surgeons. These fractures about the hip usually necessitate operative management. Life expectancy must be taken into account in management, but if survivorship is greater than 1 month, operative intervention is indicated. Determination must be made prior to operative management if the lesion is a solitary or metastatic lesion. Imaging of the entire femur is necessary to determine if there are other lesions present. Bone lesions that have a large size, permeative appearance, soft tissue mass, and rapid growth are all characteristics that suggest an aggressive lesion. Biopsy of the lesion in coordination with the operative surgeon should be conducted if the primary tumor is unknown. Metastatic disease is much more common than primary tumors in the adult population. Many metastatic fractures in the intertrochanteric region, and all fractures in the femoral neck and head are an indication for hemiarthroplasty or total hip arthroplasty. Cemented femoral implants are generally indicated. This allows immediate weight bearing in a bone with compromised bone stock, thus reducing the risk of peri-operative fractures. Additionally, patients are often treated with radiation and/or chemotherapy, which may prevent proper osseointegration of an ingrowth femoral component. Highly porous ingrowth shells have been shown to provide reliable and durable fixation even in these situations. Management of a periacetabular pathologic fracture, particularly resulting in a pelvic discontinuity is a particularly challenging situation. Use of a highly porous acetabular component combined with an
Introduction. Patients with osteonecrosis of the femoral head are typically younger, more active, and often require high rates of revision following primary total hip arthroplasty. However, outcomes of revision hip arthroplasty in this patient population have been rarely reported in the literature. The purpose of this study was to report the intermediate-term clinical and radiographic outcomes of revision hip arthroplasty in patients with osteonecrosis of the femoral head. Materials & Methods. Between November 1994 and December 2009, 187 revision hip arthoplasty were performed in 137 patients who had a diagnosis of osteonecrosis of the femoral head. Exclusion criteria included infection, recurrent instability, isolated polyethylene liner exchange, and inadequate follow-up (less than 3 years). The final study cohort of this retrospective review consisted of 72 patients (75 hips) with a mean age of 53.3 years (range, 34 to 76). Components used for the acetabular revision included a cementless porous-coated cup in 58 hips and an
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented highly porous ingrowth acetabular components can be used for the reconstruction of the vast majority of revision cases, especially where small to mid-sized segmental or cavitary defects are present which do not compromise stable mechanical support by the host bone for the cup after bone preparation is complete. A mechanically stable and near motionless interface between the host bone and the implant is required over the initial weeks post-surgery for bone ingrowth to occur, regardless of the type of porous surface employed. As bone deficiency increases, the challenge of achieving rigid cup fixation also increases, especially if the quality of the remaining host bone is compromised. A stepwise approach to enhanced fixation of the highly porous revision acetabular component is possible as follows:. Maximise Screw Fixation. Use of a limited number of screws in the dome only (as routinely occurs with a cluster hole design) is inadequate, except for primary arthroplasty cases or very routine revision cases with little or no bone loss and good bone quality. Otherwise an array of screws across the acetabular dome and continuing around the posterior column to base of the ischium is strongly recommended. This can help prevent early rocking of the cup into a more vertical position due to pivoting on dome screws used alone, via cup separation inferiorly in zone 3. A minimum of 3 or 4 screws in a wide array are suggested and use of 6 or more screws is not uncommon if bone quality is poor or defects are large. Cement the Acetabular Liner into the Shell. This creates a locking screw effect, which fixes the screw heads in position and prevents any screws from pivoting or backing out. Acetabular Augments (vs Structural Allograft). When critical segmental defects are present which by their location or size preclude stable support of the cup used alone, either a structural allograft or highly porous metal augment can provide critical focal support and enhance fixation. Highly porous metal augments were initially developed as a prosthetic allograft substitute in order to avoid the occasional graft resorption and loss of fixation sometimes seen with acetabular allograft use. Cup-Cage Construct. If one or more of the above strategies are used and fixation is deemed inadequate, it is possible to add a ½ or full
Stabilisation of a pelvic discontinuity with a posterior column plate with or without an associated
Stabilisation of a chronic pelvic discontinuity with a posterior column plate with or without an associated
Introduction: The management of periprosthetic osteolysis is a challenging problem in revision hip arthroplasty. Filling acetabular bone defects with structural allografts resulted in early failure due to resorption of the graft. The application in combination with reinforcement rings should promote bone incorporation as a result of reduced mechanical stresses. This study evaluates the long-term results in the treatment of acetabular deficiencies using bulk allografts supported with a Burch-Schneider Anti-Protrusio Cage (APC). Materials and Methods: From January 1992 to December 1995, 69 consecutive patients underwent revision surgery following periprosthetic osteolysis and aseptic loosening of the cup. Acetabular bone loss included IIIA and IIIB types according to Paproski classification. 12 patients died for unrelated causes with a well-functioning total hip arthroplasty in situ. 3 cases were lost at follow-up. The study group consisted of 56 hips in 54 patients. There were 11 males and 43 females, aged from 33 to 84 years (medium 65). Average follow-up was 11.7 years, ranging from 10 to 14.4. Surgical procedure included filling acetabular bone defects with bulk allografts supported with a Burch-Schneider APC which was fixed with screws to the iliac bone. A poly-ethylene cup was finally cemented into the metal cage. Deambulation was allowed one week after surgery, but weightbearing was delayed two months. Clinical evaluation was determined using Harris hip score (HHS). The stability of the acetabular implant was assessed according to Gill criteria. The progression of the bone graft was evaluated using Gross grading. Results: 2 patients developed deep infection that was treated by resection-arthroplasty. Aseptic loosening of