Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 47 - 47
1 Aug 2013
Ukunda F Lukhele M
Full Access

Introduction and aim:. With up to 70% of adults with tuberculosis in Sub-Saharan Africa infected with human immunodeficiency virus (HIV), severe spinal tuberculosis presents a different set of clinical and surgical challenges. To overcome the disadvantages of various traditional techniques, particularly in patients who are HIV-positive with opportunistic pulmonary pathology, and to obviate the need to violate the diaphragm in the lower thoracic and upper lumbar spine, a posterior vertebral column resection through a single posterior approach was proposed. The aim of this study is to report on the early results of the single-stage posterior only vertebral column resection. Method:. A total of 12 patients (10 females and 2 males) seen at CMJAH between January 2007 and January 2011 underwent a single-stage posterior only posterior vertebral column resection, and were retrospectively reviewed. The indications for PVCR are essentially the same as those for 360 degrees decompression and fusion. The mean follow-up period was 15.8 months (range 5 to 44 months). Results:. Eleven allografts and 1 autograft were placed centrally and secured. The kyphosis correction averaged 17.83 degrees (range 0 to 45 degrees); with no loss of correction at last follow-up. The mean number of vertebrae removed was 1.325 (0.75 to 2) with the mean instrumented levels of 3.8 (2 to 7). The mean duration of surgery was 266.6 minutes (140 to 415 mins), the mean intra-operative blood loss was 712.5 mls (350–2100 mls). No loosening or breakage of screws occurred. The mean Frankel neurology grading at last follow-up was D (B to E). Conclusion:. Early results of single-stage only PVCR are gratifying, particularly in patients with decreased pulmonary functions who will not withstand to adverse effects of anterior surgery and 2 stage-surgery. It is an effective surgical technique but technically demanding procedure with possible risks of major complications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 38 - 38
1 Mar 2013
Abdullah S Dunn R
Full Access

Objective. Posterior vertebral column resection (PVCR) is indicated in the management of severe rigid spine deformities. It is a complex surgical procedure and is only performed in a few spine centres due to the technical expertise required and associated risk. The purpose of this study is to review the indications, surgical challenges and outcomes of patients undergoing PVCR. Methods. 12 patients with severe spinal deformities who underwent PVCR were retrospectively reviewed after a follow-up of 2 years. Surgery was performed with the aid of motor evoked spinal cord monitoring and cellsaver when available. The average surgical duration was 310 minutes (100–490). The average blood loss was 1491 ml (0–3500). The indication for PVCR was gross deformity and myelopathy which was due to congenital spinal deformities and one case of old tuberculosis. Clinical records and the radiographic parameters were reviewed. Results. Kyphosis of an average of 72 degrees was corrected to 28 degrees. The associated scoliosis was corrected from an average of 49.2 to 21.2 degrees. Ten patients improved neurologically to ASIA D and E. One patient deteriorated markedly, required revision with no initial improvement but reached ASIA E at 6 months after surgery. Four patients had associated syringomyelia. All were re-scanned at 1 year. The three with small syrinx's demonstrated no progression on MRI and the large syrinx resolved completely. In addition to the neurological deterioration, complications included 1 right lower lobe pneumonia. Conclusion. PVCR is an effective option to correct complex rigid kyphoscoliosis. In addition it allows excellent circumferential decompression of the cord and neurological recovery. When the congenital scoliosis is associated with syringomyelia with no other cause evident, it may allow resolution of the syrinx. Key words: Posterior vertebral column resection, severe spinal deformities, myelopathy, syringomyelia. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 99 - 99
1 Feb 2003
Naique SB Lahere VJ
Full Access

Twenty-one patients with rigid kyphosis treated by single stage vertebral column resection were evaluated retrospectively. The average age was 12 years and kyphosis was 75 degrees. Thirteen cases were due to tuberculosis while 8 had a congenital anomaly, 5 cases had neurologic deficit. Radiographs, CT and MRI scans were used for preoperative evaluation. The survey included transpedicular vertebral decancellisation, spinal column shortening, interbody fusion and segmental spinal instrumentation. At 36 months [36–60] follow up, the average correction was 61% and all cases adequately fused. Complications included one case with postoperative neurological deterioration and one patient with decompensated lordosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 8 - 8
1 Jul 2012
Helenius I Pajulo O
Full Access

Purpose. To report the results of full vertebral column resection (VCR) for paediatric spinal deformity. Methods and Results. All VCR (n=47) for paediatric spinal deformity were retrospectively evaluated from four university hospitals performing these procedures in Finland between 2005 and 2010. After excluding single hemivertebra (n=25) and resections performed for patients with MMC (n=6), 16 patients with full VCR (mean age at surgery 12.9 yrs [6.5-17.9] AIS 1; NMS 3; Congenital scoliosis 3 primary, revision 4; Kyphosis congenital 2, global 2; NF1 scoliosis 1) were identified. Seven procedures were performed anteroposteriorly and nine posterior-only. Mean follow-up time 1.9 (0.6–5.5) years. Major Curve (MC) averaged preoperatively 85 (58–120) degrees, 31 (14-53) degrees at 6 months, and 37 (17-80) degrees at 2-year follow-up. MC correction averaged 61 (46-86)% in the AP and 64 (57-83)% in the PL group at 6 months and 54 (18-86)% and 60 (41-70)% at 2-yr FU, respectively (NS). Blood loss averaged 3400 (500-8200) mL (NS between groups). The mean SRS-24 total scores were 100 (92-108) for AP and 102 (95-105) for PL group. There was one paraparesis in the AP group necessitating urgent re-decompression with full recovery. One peripheral L5 motor deficit resolved fully within few days (PL). Two junctional kyphosis were observed (one in both group). One one-sided partial lower instrumentation pull-out was observed without need for revision. One pseudoarthrosis occurred in AP group needing revision. Conclusions. Full VCR is rarely needed for paediatric spinal deformity with an estimated incidence of 2.9/million/year. Posterior VCR allows better control of neural elements during deformity correction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 2 - 2
1 Nov 2021
Faldini C
Full Access

Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a tough challenge: prior to the introduction of modern internal fixation systems, the only option was an arthrodesis to prevent worsening of the deformity. Then, the introduction of pedicle screws allowed the surgeons to perform powerful corrective manoeuvres, distributing forces over multiple levels, to which eventually associate osteotomies. In treating flexible coronal deformities, in-ternal fixation and corrective manoeuvres may be sufficient: the combination of high density pedicle screws and direct vertebral rotation revolutionized surgical treatment of scoliosis. However, spinal osteotomies are needed for correcting complex rigid deformities; the type of osteot-omy must be chosen according to the aetiology, type and apex of the deformity. When dealing with large radius deformities, spread over multiple levels and without fusion, multiple posterior column os-teotomies such as Smith-Petersen and Ponte (asymmetric, when treating scoliosis) can be performed, dissipating the correction over many levels. Conversely, the management of a sharp, angulated de-formity that involves a few vertebral levels and/or with bony fusion, requires more aggressive 3 col-umn osteotomies such as Pedicle Subtraction Osteotomies (PSO), Bone Disc Bone Osteotomies (BDBO) or Vertebral Column Resection (VCR). Sometimes the deformity is so severe that cannot be corrected with only one osteotomy: in this scenario, multilevel osteotomies can be performed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 126 - 126
1 Jan 2017
Gasbarrini A Bandiera S Barbanti Brodano G Terzi S Ghermandi R Cheherassan M Babbi L Girolami M Boriani S
Full Access

In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively. En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular carbon fiber implants were applied in 111 patients, titanium mesh cage implants in 21 patients and titanium expandable cages in 3 patients; very recently in 3 cases we started to use custom made titanium implants. The latter were prepared according to preoperative planning of en bloc VCR based on CT-scan of the patient, using three dimensional printer. The use of modular carbon fiber implant has not leaded to any mechanical complications in the short and long term follow-up. In addition, due to radiolucent nature of this implant and less artifact production on CT and MRI, tumor relapse may be diagnosed and addressed earlier in compare with other implants, which has a paramount importance in these group of patients. We did not observe any implant failure using titanium cages. However, tumor relapse identification may be delayed due to metal artifacts on imaging modalities. Custom- made implants are economically more affordable and may be a good alternative choice for modular carbon fiber implants. The biocompatibility of the titanium make it a good choice for reconstruction of the defect when combined with bone graft allograft or autograft. Custom made cages theoretically can reproduce patients own biomechanics but should be studied with longer follow-up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 47 - 47
1 Apr 2012
Seel E Reynolds J Nnadi C Lavy C Bowden G Wilson-Macdonald J Fairbank J
Full Access

To determine extent of correction in spinal osteotomy for fixed sagittal plane deformity. Radiographic retrospective cohort analysis using standardised standing whole spine radiographs. Level III evidence. 24 patients (14 females/10 males, av. 53.6 yrs) with sagittal plane deformity due to either ankylosing spondylitis (4), idiopathic (12), congenital (1), tumour (2), infectious (1), or posttraumatic (4) aetiologies. Max. 4 yrs follow up. Sagittal balance, lumbar lordosis correction, osteotomy angle, pelvic indices. Chevron (3), pedicle subtraction (17), and vertebral column resection (4) osteotomies were performed with the majority at L3 (9) and L2 (8). The C7-S1 sagittal vertical axis demonstrated a preoperative decompensation averaging 12.0 cm (range -7 to 37) with 55% of patients achieving normal sagittal balance postoperatively. Lumbar lordosis increased from 28.9° (range -28 to 63) to 48.9° (range 12 to 69) (22.3° av. correction). L3 osteotomy angle was largest, average 31° (range, 16 to 47). There were 11 complications comprising; major (1) and minor (1) neurological, junctional kyphosis (3), metalwork problems (2), dural tear (2) and infection (2). Four patients required additional surgery at latest follow-up. Technical outcome was good 11(50%), fair 8(36%), poor 3(14%). Spinal osteotomy is a very effective technique to correct fixed sagittal imbalance and provide biomechanical stability. The high complication rate mandates a careful assessment of the risk/benefit ratio before undertaking what is a major reconstructive procedure. Most patients are satisfied, particularly when sagittal balance is achieved


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 209 - 209
1 Sep 2012
Rose PS Yaszemski MJ Wenger DE Sim FH
Full Access

Purpose. Curative treatment of malignancies in the sacrum and lumbar spine frequently requires en-bloc spinopelvic resection. There is no standard classification of these procedures. We present a classification of these resections based on analysis of 45 consecutive cases of oncologic spinopelvic resections. This classification implies a surgical approach, staging algorithm, bony and soft tissue reconstruction, and functional outcomes following surgery. Method. We reviewed oncologic staging, surgical resections, and reconstructions of 45 consecutive patients undergoing spinopelvic resection with curative intent. Mean follow-up of surviving patients was 38 months. Common themes in these cases were identified to formulate the surgical classification. Results. Tumors included chondrosarcoma (n=11), other sarcomas (n=11), osteosarcoma (n=9), chordoma (n=6), locally invasive carcinoma (n=5), and others (n=3). Resections could be divided into 5 types based on the exent of the lumbosacral resection and the need for an associated external hemipelvectomy. Type 1 resections included a total sacrectomy +/− lumbar spine resection. Type 2 resections included hemisacrectomy +/− partial lumbar excision, and iliac wing resection. Type 3 resections encompassed external hemipelvectomy with hemisacrectomy +/− partial lumbar excision. Type 4 resections encompassed external hemipelvectomy with total sacrectomy +/− lumbar excision. Type 5 excisions involved hemicorporectomy type procedures. For each type of resection we have developed guidelines for trans- vs retroperitoneal surgical approaches, staging of the resections, bony and soft tissue reconstructive procedures to re-establish spinopelvic continuity, and predicted functional outcomes for patients. At mean 38 month follow-up on surviving patients, 28 are living and 17 are deceased. Twenty-two of 28 surviving patients are disease free. Nineteen of 26 surviving patients are independent in their activities of daily living. Conclusion. En bloc spinopelvic resections may be classified into five types based on the extent of lumbosacral excision and the need for concurrent hemipelvectomy. Using this classification system, we have formulated treatment strategies to guide surgical approach, procedural staging, bony and soft tissue reconstructive procedures, and expected functional outcomes. Long term survival and independent function can be achieved in this challenging patient population


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 219 - 219
1 Mar 2010
Robertson P
Full Access

Post Traumatic Fixed Thoraco-Lumbar Spinal Deformity may result in pain, regional and or global spinal deformity and neural compromise. Treatment is demanding as osteotomy is required in either anterior alone or both anterior and posterior spinal columns with concomitant reconstruction. This paper reviews 15 years experience with these cases. A retrospective review of 21 patients operated on over 15 years was conducted. Patients were grouped based on original thoraco-lumbar injury pattern – Type A, B and C. Osteotomies and reconstruction were performed from both anterior and posterior approaches dependent upon the pathology. Clinical and radiological follow up for all patients was a minimum of one year. Analysis of outcomes was performed in relation to the clinical and radiological success. Complications were recorded. Sixteen patients had two-column involvement and five had only the anterior column affected. Initial injury patterns were – Type A–9, Type B–4, and Type C–8. Approaches were anterior in six (five in Type A injuries), posterior and anterior in 11 (five two-stage and six three-stage operations), and posterior only in four (one pedicle subtraction osteotomy, one vertebral column resection, one posterior reduction of a dislocation, and one case abandoned after the posterior procedure). Anterior reconstruction was performed with structural iliac crest (two), titanium mesh cages (14) and expanding corpectomy cages (three). All 14 cases requiring posterior stabilisation were treated with pedicle screw based systems. The global assessment of outcome was individualised to the original indication – mechanical pain, deformity, and or symptomatic spinal stenosis. Success (good or excellent outcome) was achieved in 16 cases. Failure (fair or poor outcome) occur red in three completed cases. These three cases had chronic pain (two major, one minor). Two patients had incomplete assessment – one dying of MI in recovery after a technically successful procedure – and one developing deep infection with abandonment of the later stages (see above). There was one non-union. There were no neurological complications. Delayed treatment of late posttraumatic deformity is challenging however good results are achievable with attention to the specific clinical and biomechanical requirements of each case. Technical failure occurred with inadequately radical intervention on one occasion. Major chronic thoracotomy pain occurred in one otherwise technically successful reconstruction


Bone & Joint 360
Vol. 1, Issue 4 | Pages 27 - 29
1 Aug 2012

The August 2012 Oncology Roundup. 360. looks at: prolonged symptom duration; peri-operative mortality and above-knee amputation; giant cell tumour of the spine; surgical resection for Ewing’s sarcoma; intercalary allograft reconstruction of the femur for tumour defects; and an induced membrane technique for large bone defects


Bone & Joint 360
Vol. 3, Issue 1 | Pages 27 - 29
1 Feb 2014

The February 2014 Spine Roundup360 looks at: single posterior approach for severe kyphosis; risk factors for recurrent disc herniation; dysphagia and cervical disc replacement or fusion; hang on to your topical antibiotics; cost-effective lumbar disc replacement; anxiolytics no role to play in acute lumbar back pain; and surgery best for lumbar disc herniation.


Bone & Joint 360
Vol. 1, Issue 2 | Pages 28 - 30
1 Apr 2012

The April 2012 Children’s orthopaedics Roundup360 looks at osteonecrosis of the femoral head and surgery for dysplasia, femoral head blood flow during surgery, femoroacetabular impingement and sport in adolescence, the Drehmann sign, a predictive algorithm for septic arthritis, ACL reconstruction and arthrofibrosis in children, spinal cord monitoring for those less than four years old, arthroereisis for the flexible flat foot, fixing the displaced lateral humeral fracture, and mobile phones and inclinometer applications