Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 16 - 16
7 Jun 2023
Thomas A Wilkinson M
Full Access

The documentation of deep infection rates in joint replacement is fraught with multiple difficulties. Deep infections acquired in theatre may present late, but some later presenting deep infections are clearly haematogenous, and not related to surgical management. The effect of Ultra Clean Air on infection rates was published by Charnley in 1972 (CORR,87:167–187). The data is valuable because large numbers of THRs were performed in standard and Ultra Clean theatres, and detailed microbiology of the air was also recorded. No IV antibiotics were used, so only the effect of air quality was studied. We extracted the data on theatre type and numbers from Table 3, and numbers and intervals from surgery of deep infections from Table 7. Theatre types with 300 air changes per hour and 3.5 CFU/M. 3. were classified as Ultra Clean. A logistic regression model was used to examine the effect of theatre type and time elapsed after procedure on the probability of becoming infected. The model suggests that, controlling for time period, Ultra Clean Air is associated with a significantly lower probability of infection, with an OR of 0.30, p = 2.74 × 10. −6. The effect is larger earlier post-surgery, but it does persist. The results are best reviewed as a graphic, which shows that Ultra Clean Air clearly affects the deep infection rate for up to four years post-surgery. Ultra Clean Air reduces infection rates for up to four years post-surgery, so it is safe to assume that infections presenting after this are haematogenous. Ultra Clean Air does not eliminate early deep infection, so some early infections are not related to air quality. It is not practical to undertake widespread detailed retrospective analyses of cases. When monitoring infection rates there needs to be a balance between failing to record infections related to surgical technique and waiting many years to record low numbers of very late presenting problems. We suggest that registries should regard infections documented within three years of surgery as treatment complications. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 35 - 35
1 May 2018
Thomas A Wijesinghe C Pralyadi R Alberini F Simmons M
Full Access

Introduction. Operating theatre airflow can be measured using pulsed lasers (particle image velocimetry) but the process is difficult to do in 3D. Cup, vane or hot wire anemometers provide only 2D information. 3D measurements enable better understanding of airflow. Patients/Materials & Methods. We used a Windmaster ultrasound 3D anemometer (Skyview systems), which uses three ultrasound transmitters to measure velocity in XYZ planes, with a sampling rate of 32 Hz. Post processing was done using MATLAB. An operating theatre with an Howorth Exflow canopy was studied. Equipment, including lights, was moved. A 50 cm grid was marked, and measurements were made at intervals up to the ceiling. Door opening was observed within the clean zone and the peripheral zone, next to the door and on the opposite side of the room. Anaesthetic screens were studied during operating. Airflow was visualised initially using video of smoke puffs and subsequently measured using the aeronometer. Results. In the upper part of the ultraclean canopy air velocity was 0.34 m/s with a standard deviation of 0.02 m/s, indicating an almost constant velocity. In the periphery there was more turbulence and horizontal air movement. Door opening had no effect on air movements in the clean zone. In the periphery there was an increase in horizontal airflow when the doors are closed. There is a pattern of upward airflow against an anaesthetic screen. This is unlikely to be caused by warming blankets. If the partial wall of the enclosure is lowered this results in a fast washout of air towards the anaesthetist. Discussion. Traditional anaesthetic screens may interfere with airflow. Door opening is a lesser effect. Conclusion. The 3D anemometer enables detailed mapping of airflow within an ultra clean air operating theatre. The data obtained will enable the construction of more accurate computational fluid dynamic models of operating theatres


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 167 - 167
1 May 2012
G. H A. R M. W C. F
Full Access

Introduction. Reducing infection in total joint replacement by using ultra clean air and protective enclosed suits (space suits) has become the standard in many operating theatres without good supporting evidence. This study examined the impact of laminar flow and space suits on the rate of revision for early infection following total hip (THR) and knee (TKR) replacement. Method. We used the 10-year results of the New Zealand Joint Registry to compare the rates of revision for early infection between laminar flow and conventional theatres both with and without the use of space suits. We separated hospitals and surgeons who had worked with and without space suits in both environments to exclude other confounding variables. Results. There were 51,485 THR and 36,826 TKR registered with laminar flow theatres used for 50% of the procedures and space suits used in 44% of cases. In THR there was a significant increase in revision for early infection in those procedures performed with the use of a space suit (p< 0.0001), for those performed in a laminar flow theatre (p< 0.003) and those procedures performed in a laminar flow theatre with a space suit (p< 0.001). The results were similar in TKR with the use of a space suit (p< 0.001), in laminar flow theatres (p< 0.019) and when laminar flow and space suits were used (p< 0.001). The results were unchanged when the surgeons and hospitals were analysed individually. Conclusion. The rate of revision for early infection has not been reduced by using laminar flow and space suits. The results of this study question the rationale for the increasing use and cost to the health system of these modalities in routine joint replacement


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 101 - 101
1 Feb 2003
Sharp RJ Chesworth T Fern ED
Full Access

Patient warming systems are used routinely to prevent hypothermia under anaesthetic, the benefits of which have been clearly shown in the anaesthetic literature. We were concerned that since these systems take ‘dirty’ air from floor level and distribute it over the patient, bacterial counts could be increased. Also, airflow under the blanket itself could disturb the patients’ own skin cells and thereby influence bacterial counts. With slit air sampling we analysed air quality at the simulated operative site by passing a known volume of air over an agar plate (tryptone glucose yeast). Using probability curves we were able to calculate the volume of air required to detect 1 colony forming unit (CFU) per m³ with 97% confidence. All tests were performed in an ultra clean air laminar flow theatre. We assessed the effect of varying degrees of skin shedding under the warming blanket using volunteer patients with Psoriasis. We also simulated activity outside the lamina flow to determine whether counts on the table were influenced. No colonies were grown in any of the study groups. Plates exposed outside the laminar flow area at floor level showed a relatively high level of contamination. We therefore conclude that the WarmTouch warming system does not influence bacterial counts at the operative site in ultraclean air ventilated theatres


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 17 - 17
1 Mar 2008
Lee P Clarke M Roberts C Gray J Keene G Rushton N
Full Access

Prior studies have compared the bacterial load observed in laminar flow operating theatres (LFOTs) and standard operating theatres (STOTs) by wound culture and air sampling during surgery. However many organisms responsible for low grade infection after THR are not readily identified on routine culture and may be detectable only by more sensitive techniques such as the poly-merase chain reaction (PCR). This study assessed the wound contamination rate during THRs and compared the results in STOT with that in LFOTs using PCR. We recruited patients undergoing primary THR for osteoarthritis. Surgery was performed in either STOTs or LFOTs, using identical skin preparation solutions, surgical drapes and operating attire. Specimens of the deep tissue, taken at the beginning and end of surgery, were each immediately separated into two sterile containers, one sent for culture (aerobic, anaerobic and enriched meat broth) and the other frozen at minus 80 degrees Celsius for PCR at a later date. In each theatre type, 40 specimens from 20 THRs were analysed by both PCR and culture. Using PCR, bacterial DNA was identified on 12 of 40 specimens (30%) from STOTs, of which 3 were taken at the start of surgery and 9 at the end of the surgery, giving a 45% wound contamination rate (9 of 20). Two specimens (5%), both taken at the end of surgery, were positive on enriched culture. In LFOTs, bacterial DNA was identified by PCR on 8 of 40 specimens (20%), of which 2 were taken at the start of surgery and 6 at the end of surgery, giving a 30% wound contamination rate (6 of 20). No specimens were positive on enriched culture. Wound contamination of primary THR occurs frequently in both STOTs and LFOTs. Although STOTs showed evidence of more frequent wound contamination than LFOTs, with the numbers available, no significant difference was detected. These data remind us the importance of aseptic surgical technique as significant wound contamination can occur despite the use of ultra clean air operating theatres


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 227 - 227
1 Sep 2005
Clarke M Lee P Roberts C Gray J Keene G Rushton N
Full Access

Introduction: Although there is evidence that laminar flow operating theatres (LFOTs) can reduce the incidence of wound infection over standard operating theatres (STOTs) when no routine peri-operative antibiotics were used, the evidence for the use with concurrent parenteral antibiotics is less compelling. A number of prior studies have compared the bacterial load observed in LFOTs and STOTs by wound culture and air sampling during surgery. However many organisms responsible for low grade infection after THR are not readily identified on routine culture and may be detectable only by more sensitive techniques such as the polymerase chain reaction (PCR), a molecular biology test for the presence of bacterial DNA. The purpose of this study was to compare the wound contamination rate during THRs performed in STOT with that in LFOTs using PCR. Method: Patients undergoing primary THR for osteoarthritis without a history of joint infection were recruited for the study. Surgery was performed in either STOTs or LFOTs, using identical skin preparation solutions, surgical drapes and operating attire. Specimens of the deep tissue, taken at the beginning and end of surgery, were each immediately separated into two sterile containers, one sent for culture (aerobic, anaerobic and enriched meat broth) and the other frozen at minus 80 degrees Celsius for PCR at a later date. Results: In each theatre type, 40 specimens from 20 THRs were analysed by both PCR and culture (80 specimens and 40 THRs in total). Using PCR, bacterial DNA was identified on 12 of 40 specimens (30%) from STOTs. Of these 12, three were taken at the start of surgery and nine at the end of the surgery, equivalent to a 45% wound contamination rate (9 of 20). Only two specimens (5%), both taken at the end of surgery, were positive on enriched culture. In LFOTs, bacterial DNA was identified by PCR on eight of 40 specimens (20%). Of these eight, two were taken at the start of surgery and six at the end of surgery, equivalent to a 30% wound contamination rate (6 of 20). None of the specimens were positive on enriched culture. Discussions: We concluded that wound contamination of primary THR occurs frequently in both STOTs and LFOTs. Although STOTs showed evidence of more frequent wound contamination than LFOTs, with the numbers available, no significant difference was detected. These data are important in that they confirm that continued vigilance to technique continue to be important as significant wound contamination can occur despite the use of ultra clean air operating theatres