Introduction. Approximately 2,000 Skeletal transcutaneous osseointegration (STOI) procedures have been performed worldwide as of 2020, more than half of which have been performed by the Osseointegration Group of Australia using a press-fit technique with either ILP or OPL implant designs. Despite the consistently demonstrated clinical benefits, concerns regarding potential complications following STOI have slowed its widespread adoption. As more patients are followed for a longer period of time, longitudinal studies have confirmed complication rates are very acceptable, similar to those of total ankle and total elbow replacements. One of the major risk category is implant removal. The primary goal of this study was to investigate the complications and technical issues associated with
Introduction. Osseointegration is a potential treatment option for transfemoral amputees experiencing socket related problems. Till this date, there is little data assessing the feasibility and advantages of osseointegration in individuals with transtibial amputations. Materials and Methods. We prospectively followed 91 patients undergoing
Introduction.
Introduction: Drilling of the femoral bone tunnel in anterior cruciate ligament reconstruction may be performed in a
Evaluation of
Background. Recent publications have supported the anatomic placement of anterior cruciate grafts to optimise knee function. However, anatomic placement using the anteromedial portal has been shown to have a higher failure rate than traditional graft placement using the
Purpose: To evaluate the differencies in graft orientation between
Introduction. The
The
Aim: To evaluate whether a guiding pin for a femoral tunnel could be positioned through the tibial tunnel into the center of the anatomical ACL attachment. Methods: 77 knees underwented arthroscopic ACL reconstruction with hamstrings. The femoral tunnel was drilled through an anteromedial portal at the center of the anatomic insertion at about 10.00 resp.14.00 position. Tibial tunnel (mean diameter 7.55 ± 0.54 mm) was drilled using a guide inserted at 90 degrees of knee flexion. Then, through the tibial tunnel, a 4mm offset femoral drill guide was positioned as close as possible to the femoral tunnel and a 2.5 mm guide wire was drilled. The position of the guide wire was photographed arthroscopically and the deviation was measured as the distance between the center of the femoral tunnel and the guide wire. Results: The mean deviation was 4.50 ± 1.54 mm (p = 0.00000004) In 74 knees (96.1%) the guidewire did not reach the femoral tunnel. Only in 3 knees it reached the superomedial edge of the femoral tunnel. No statistical relationship was found between deviation and tibial tunnel inclination angles or tibial tunnel diameter. Conclusions:
Thirty patients with chronic lesions of the ACL underwent reconstruction of the ACL with double bundle technique. A wire at 65° was used for AM tibial tunnel and a prototype was used for the PL. For femoral tunnels, a
Introduction. Transportal technique of femoral drilling allows the femoral tunnel to be placed in anatomic location. The study was conducted to evaluate the orientation of ACL graft performed by two different techniques and compared to orientation of native ACL. Materials/Methods. 50 patients (Group A) underwent ACL reconstruction with
Transportal technique of femoral drilling allows the femoral tunnel to be placed in anatomic location. The study was conducted to evaluate the orientation of ACL graft performed by two different techniques and compared to orientation of native ACL. 50 patients (Group A) underwent ACL reconstruction with
Correct femoral tunnel position in anterior cruciate ligament reconstruction (ACLR) is critical in obtaining good clinical outcomes. We aimed to delineate whether any difference exists between the anteromedial (AM) and trans-tibial (TT) portal femoral tunnel placement techniques on the primary outcome of ACLR graft rupture. Adult patients (>18year old) who underwent primary ACLR between January 2011 – January 2018 were identified and divided based on portal technique (AM v TT). The primary outcome measure was graft rupture. Univariate analysis was used to delineate association between independent variables and outcome. Binary logistic regression was utilised to delineate odds ratios of significant variables. 473 patients were analysed. Median age at surgery was 27 years old (range 18–70). A total of 152/473, (32.1%) patients were AM group compared to 321/473 (67.9%) TT. Twenty-five patients (25/473, 5.3%) sustained graft rupture. Median time to graft rupture was 12 months (IQR 9). A higher odds for graft rupture was associated with the AM group, which trended towards significance (OR 2.03; 95% CI 0.90 – 4.56, p=0.081). Older age at time of surgery was associated with a lower odds of rupture (OR 0.92, 95% CI 0.86 – 0.98, p=0.014). There is no statistically significant difference in ACLR graft rupture rates when comparing anteromedial and trans-tibial portal technique for femoral tunnel placement. There was a trend towards higher rupture rates in the anteromedial portal group.
Despite advances in limb reconstruction, there are still a number of young patients who require trans-tibial amputation. Amputation osteoplasty is a technique described by Ertl to enhance rehabilitation after trans-tibial amputation. The purpose of the present study was to evaluate the results of the original Ertl procedure in skeletally immature patients, and to assess whether use of this procedure would result in a diminished incidence of bony overgrowth. Four consecutive patients (five amputations) treated between January 2005 and June 2008 were reviewed. Clinical evaluation consisted of completion of the prosthesis evaluation questionnaire (PEQ) and physical examination. Radiographic analysis was performed to evaluate bone-bridge healing, bone overgrowth and the medial proximal tibial angle (MPTA).Purpose:
Methods:
Arthrofibrosis is a less common complication following anterior cruciate ligament (ACL) reconstruction and there are concerns that undergoing early surgery may be associated with arthrofibrosis. The aim of this study was to identify the patient and surgical risk factors for arthrofibrosis following primary ACL reconstruction. Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and December 2019 were analyzed. The Accident Compensation Corporation (ACC) database was used to identify patients who underwent a subsequent reoperation with review of operation notes to identify those who had a reoperation for “arthrofibrosis” or “stiffness”. Univariate Chi-Square test and multivariate Cox regression analysis was performed. Hazard ratios (HR) with 95% confidence intervals (CI) were computed to identify the risk factors for arthrofibrosis. 9617 primary ACL reconstructions were analyzed, of which 215 patients underwent a subsequent reoperation for arthrofibrosis (2.2%). A higher risk of arthrofibrosis was observed in female patients (adjusted HR = 1.67, 95% CI 1.22 – 2.27, p = 0.001), patients with a history of previous knee surgery (adjusted HR = 1.97, 95% CI 1.11 – 3.50, p = 0.021) and when a
The purpose of this study is to identify the optimal amount of knee flexion required to drill the femoral tunnel in ACL reconstruction using the
There is significant disagreement among surgeons regarding optimal placement of the femoral tunnel for anterior cruciate ligament reconstruction. Placement of the femoral tunnel via a
In TKA, prosthetic femoral and tibial implants must be symmetrically placed and matched in the mechanical axis and the ligament gaps must be correctly balanced. The collateral ligaments are the key guide, as they arise from the epicondyles of the distal femur, are perpendicular to the AP axis of Whiteside, and are coincident with the
Purpose: This prospective comparative study examined the two-year results of two femoral fixation method for anterior cruciate ligament (ACL) repair using the four-part hamstring technique. A consecutive series of 60 patients with the same tear criteria involving the ACL alone were randomly assigned to the two treatment arms. Femoral fixation was achieved by mixed corticocancellous transfixation or by interference screw fixation. Material and methods: The series included two cohorts of 30 patients each. We excluded patients with a history of ligament or bone surgery and those with associated lesions of the peripheral ligaments. Complementary lateral reinforcement was not performed in either group. The interference screw fixation group had 20 men and 10 women, mean age 29 years (14–48), 18 right side. The blind femoral tunnel was drilled arthroscopically. The transfixation group included 19 men and 11 women, mean age 26 years (16–40), 17 right side. The blind femoral tunnel was drilled via a