Advertisement for orthosearch.org.uk
Results 1 - 20 of 43
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2022
Compte R Freidin M Williams F
Full Access

Background. Intervertebral disc degeneration (DD) is a complex age-related condition that constitutes the main risk factor for disabling back pain. DD is assessed using different traits extracted from MR imaging (MRI), normally combined to give summary measures (e.g. Pfirmann score). The aetiology of DD is poorly understood and despite its high heritability (75%), the precise genetic predisposition is yet to be defined. Genome wide association study (GWAS) is used to discover genetic variants associated with a disease or phenotype. It tests variants across the whole genome. It requires large samples to provide adequate but unfortunately there is poor availability of spine imaging data due to the high cost of MRI. We have adopted new methods to examine different MRI traits independently and use the information of those traits to boost GWAS power using specialized statistical software for jointly analyse correlated traits. Methods/Results. We examined DD MRI features disc narrowing, disc bulge, disc signal intensity and osteophyte formation in the TwinsUK cohort who had undergone T2-weighted sagittal spine MRI. GWAS were performed on the four traits. MTAG software was used to boost single trait GWAS power using the information in the other trait GWAS. 9 different loci were identified. Conclusions. Preliminary results suggest genes GDF6, SP1/SP7 are associated with individual trait signal intensity. In addition, novel associated genes with potential for shedding new light on pathogenic mechanisms are identified. Additional cohorts will be included in the design as a replication to test reproducibility of the results. Conflicts of interest: No conflicts of interest. Sources of funding: Funded by Disc4All, EU Horizon 2020, MSCA-2020-ITN-ETN GA: 955735


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 9 - 9
1 Oct 2022
Rahman T Baxan N Murray R Tavana S Schaer T Smith N Bull J Newell N
Full Access

Introduction. Nucleus replacement surgery has the potential to be an early treatment option for chronic lower back pain. The surgery involves removal (nuclectomy) and replacement of the native degenerated nucleus with a material designed to restore the disc's physiological properties. Multiple techniques have been considered to perform a nuclectomy, however the advantages and disadvantages of each are not well understood. The aim of this study was to quantitatively compare three nuclectomy techniques: automated-shaver, rongeurs, and laser. Methods and results. Fifteen human vertebra-disc-vertebra lumbar specimens were split into three groups. Before and after nuclectomy axial mechanical tests were performed and T2-weighted 9.4T MRIs were acquired for each specimen. Using the automated-shaver and rongeur similar volumes of disc material were removed (2.51±1.10% and 2.76±1.39% of the total disc volume, respectively), whilst considerably less material was removed when using the laser (0.12±0.07%). Using the automated-shaver and rongeur significantly reduced the toe-region stiffness, while the linear region stiffness was significantly reduced only in the rongeur group. From the MRIs, more homogeneous cavities were seen in the center of the disc when using the automated shaver compared to rongeur, whilst laser ablation resulted in small, localized cavities. Conclusion. Results suggest that the current laser parameters are not suitable for removal of large volumes of material unless the technique is optimised for this application. Both rongeurs and automated-shavers can be used to remove large volumes of material but the reduced risk of collateral damage to surrounding tissues suggests that an automated-shaver may be more suitable. Conflicts of interest: No conflicts of interest. Sources of funding: Part of this work was funded by an Imperial College Research Fellowship for NN and an EPSRC DTP CASE Conversion Studentship for TR (EP/R513052/1)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 48 - 48
1 Mar 2021
Tavana S Freedman B Baxan N Hansen U Newell N
Full Access

Abstract. Objectives. Back pain will be experienced by 70–85% of all people at some point in their lives and is linked with intervertebral disc (IVD) degeneration. The aim of this study was to 1) compare 3D internal strains in degenerate and non-degenerate human IVD under axial compression and 2) to investigate whether there is a correlation between strain patterns and failure locations. Methods. 9.4T MR images were obtained of ten human lumbar IVD. Five were classed as degenerate (Pfirrmann = 3.6 ± 0.3) and five were classed as non-degenerate (Pfirrmann = 2.0 ± 0.2). MR Images were acquired before applying load (unloaded), after 1 kN of axial compression, and after compression to failure using a T2-weighted RARE sequence (resolution = 90 µm). Digital Volume Correlation was then used to quantify 3D strains within the IVDs, and failure locations were determined from analysis of the failure MRIs. Results. Average of axial strains were higher (p<0.05) in the degenerate samples compared to the non-degenerate (−3.4 vs-5.2%, respectively), particularly in the posterior and lateral annulus (−6.2 vs −3.6%, and −5.6 vs −3.5%, respectively). Maximum 3D compressive strains were higher (p<0.05) in the posterior annulus and nucleus regions of the degenerate discs compared to non-degenerate (−9.8 vs −6.2%, and −7.7 vs −5.5%, respectively). In all samples peak tensile and shear strains were observed close to the endplates. All samples failed through the endplates with fractures in the nucleus region in all non-degenerate samples, and fractures in the lateral annulus regions in all degenerate samples. Conclusion. Degeneration caused significant changes to strain distributions within IVDs, particularly at the lateral and posterior AF regions. A shift from endplate failure in the nucleus to the annulus region was observed which was also seen in peak axial internal strains demonstrating a possible correlation between internal IVD strains, and endplate failure locations. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 3, Issue 8 | Pages 241 - 245
1 Aug 2014
Kanamoto T Shiozaki Y Tanaka Y Yonetani Y Horibe S

Objectives. To evaluate the applicability of MRI for the quantitative assessment of anterior talofibular ligaments (ATFLs) in symptomatic chronic ankle instability (CAI). Methods. Between 1997 and 2010, 39 patients with symptomatic CAI underwent surgical treatment (22 male, 17 female, mean age 25.4 years (15 to 40)). In all patients, the maximum diameters of the ATFLs were measured on pre-operative T2-weighted MR images in planes parallel to the path of the ATFL. They were classified into three groups based on a previously published method with modifications: ‘normal’, diameter = 1.0 - 3.2 mm; ‘thickened’, diameter > 3.2 mm; ‘thin or absent’, diameter < 1.0 mm. Stress radiography was performed with the maximum manual force in inversion under general anaesthesia immediately prior to surgery. In surgery, ATFLs were macroscopically divided into two categories: ‘thickened’, an obvious thickened ligament and ‘thin or absent’. The imaging results were compared with the macroscopic results that are considered to be of a gold standard. Results. Agreement was reached when comparison was made between groups, based on MRI and macroscopic findings. ATFLs were abnormal in all 39 cases and classified as ten ‘thickened’ and 29 ‘thin or absent’. As to talar tilt stress radiography, a clear cut-off angle, which would allow discrimination between ‘thickened’ and ‘thin or absent’ patients, was not identified. Conclusion. MRI is valuable as a pre-operative assessment tool that can provide the quantitative information of ATFLs in patients with CAI. Cite this article Bone Joint Res 2014;3:241–5


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 3 - 3
1 Oct 2019
Rustenburg C Emanuel K Holewijn R van Royen B Smit T
Full Access

Purpose of study and background. Clinical researchers use Pfirrmann classification for grading intervertebral disc degeneration radiologically. Basic researchers have access to morphology and instead use the Thompson score. The aim of this study was to assess the inter-observer reliability of both classifications, along with their correlation. Methods and Results. We obtained T2-weighted MR images of 80 human lumbar intervertebral discs with various stages of degeneration to assess the Pfirrmann-score. Then the discs were dissected midsagittally to obtain the Thompson-score. The observers were typical users of both grading systems: a spine surgeon, radiology resident, orthopaedic resident, and a basic scientist, all experts on intervertebral disc degeneration. Cohen's kappa (CK) was used to determine inter-observer reliability, and intra-class correlation (ICC) as a measure for the variation between the outcomes. For the Thompson score, the average CK was 0.366 and ICC score 0.873. The average inter-observer reliability for the Pfirrmann score was 0.214 (CK) and 0.790 (ICC). Comparing the grading systems, the intra-observer agreement was 0.240 (CK) and 0.685 (ICC). Conclusion. With substantial variation between observers, the inter-observer agreements for the Pfirrmann and Thompson grading systems were moderate. This may explain the poor relationship between radiological and clinical observations in patients and raises questions about the validity of the Pfirrmann score. The mediocre intra-observer agreement between the Pfirrmann and Thompson score shows that there is no clear definition of intervertebral disc degeneration. The field is in need for a new, objective and quantitative classification system to better define and evaluate disc degeneration. There are no conflicts of interest. Funded in part by Annafonds Netherlands and Dutch Spine Society


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 65 - 65
1 Jul 2020
Sahak H Hardisty M Finkelstein J Whyne C
Full Access

Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for medical image visualization and processing. The procedural steps include multimodal patient-specific loading and fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data, bone threshold-based segmentation, soft tissue segmentation, surgical planning, and a laminectomy and spinal decompression simulation. Fusion of CT and MRI elements was achieved using Fiducial-Based Registration which aligned the scans based on manually placed points allowing for the identification of the relative position of soft and hard tissues. Soft tissue segmentation of the spinal cord, the cerebrospinal fluid, the cauda equina, and the ligamentum flavum was performed using Simple Region Growing Segmentation (with manual adjustment allowed) involving the selection of structures on T1 and/or T2-weighted scans. A high-fidelity 3D model of the bony and soft tissue anatomy was generated with the resulting surgical exposure defined by labeled vertebrae simulating the central surgical incision. Bone and soft tissue resecting tools were developed by customizing manual 3D segmentation tools. Simulating a laminectomy was enabled through bone and ligamentum flavum resection at the site of compression. Elimination of the stenosis enabled decompression of the neural elements simulated by interpolation of the undeformed anatomy above and below the site of compression using Fill Between Slices to reestablish pre-compression neural tissue anatomy. The completed workflow allows patient specific simulation of decompression procedures by staff surgeons, fellows and residents. Qualitatively, good visualization was achieved of merged soft tissue and bony anatomy. Procedural accuracy, the design of resecting tools, and modeling of the impact of bone and ligament removal was found to adequately encompass important challenges in decompression surgery. This software development project has resulted in a well-characterized freely accessible tool for simulating spinal decompression surgery. Future work will integrate and evaluate the simulator within existing orthopaedic resident competency-based curriculum and fellowship training instruction. Best practices for effectively teaching decompression in tight areas of spinal stenosis using virtual simulation will also be investigated in future work


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 23 - 23
1 Sep 2019
Munir S Freidin M Rade M Määttä J Livshits G Williams F
Full Access

Background. Endplate defect is an MRI trait, found to be associated with intervertebral disc degeneration. There is a lack of understanding regarding the mechanism underlying lumbar disc degeneration (LDD). This large-scale longitudinal population-based study aimed to determine the order of appearance of degenerative change in the vertebral body and intervertebral disc, the influence of endplate degeneration on LBP and whether there is a genetic influence on endplate damage. Methods. Individuals from the TwinsUK spine study having longitudinal T2-weighted lumbar MRI scans at baseline (n=996) and a decade later (n=438) were included. LDD, vertebral endplate defect expressed as a total endplate (TEP) score and Modic change (MC) were assessed using standard techniques. Mixed-effects models were used to determine the association between spine pathology features adjusted for covariates. Endplate defect heritability was estimated using variance component analysis. Results. Significant association between endplate defect, LDD, MRI features of LDD and MC was observed. Endplate defect was independently associated with severe disabling LBP episodes. An association between LDD at baseline and MC at follow-up was shown at upper lumbar levels. TEP score was heritable with estimated additive genetic component A = 55.3% (95% CI 43.0–65.4). Conclusion. Endplate defect, LDD and MC are all independent risk factors for episodes of severe and disabling LBP. Longitudinal analysis showed LDD is followed by MC. Endplate defect has significant heritability. However, whether endplate defect triggers LDD or these pathological changes occur concurrently could not be determined conclusively. Conflicts of interest: none. Sources of Funding: This work was funded by the EU FP7 project Pain_Omics


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 233 - 233
1 Sep 2005
Hutton M Bayer J Sawant M Sharp D
Full Access

Study Design: Retrospective review of 55 subjects who for various clinical indications had sequential MRI scans. Summary of Background data: Changes in the vertebral end plate are frequently associated with degenerative disc disease. These are called Modic changes. The changes were first classified into two types. Type I changes include decreased signal intensity on T1-weighted and increased signal intensity on T2-weighted images. In type II, signal intensity is increased in both T1- and T2-weighted sequences. Type I changes are assumed to be a result of fibrovascular replacement of subchondral bone and type II changes are the manifestation of fatty replacement of subchondral bone and are considered to be chronic. These changes can be separated only on magnetic resonance imaging (MRI). If bone sclerosis is extensive, signal intensities are decreased in both T1- and T2- weighted images, and this change in the end plate is called type III change. It is again assumed that these endplate changes represent a process that is progressive (Type I converts to Type II converts to Type III). To our knowledge there is little evidence to support such assumptions. Objective: To investigate the hypothesis that Modic changes are a progressive degenerative process. Subjects: The average time interval between MRI scans was two years. No subjects had had surgical intervention. The lumbar vertebral endplates were classified using the Modic system and the results compiled to provide further data on the natural history of these endplate changes. Results: Of the endplates that had Modic type I changes on the first MRI scan, 6% had reverted to a normal MRI endplate appearance on subsequent scan. Of those with Modic type II appearance 18% were normal or type I on subsequent scan. Conclusions: This data would not support the hypothesis that Modic changes observed on MRI are a progressive degenerative process


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 33 - 33
1 Jan 2003
Morio Y Teshima R Nagashima H Nawata K Yamasaki D Nanjo Y
Full Access

Signal intensity changes of the spinal cord on MRI in chronic cervical myelopathy are thought to be indicative of the prognosis. However, the prognostic significance of signal intensity change remains controversial. The purpose of this study was to investigate the characteristics of MR findings in cervical compression myelopathy that reflect the clinical symptoms and the prognosis and to determine the radiographical and clinical factors that correlate to the prognosis. The subjects were 73 patients who underwent cervical expansive laminoplasty. Their mean age was 64 years, and the mean postoperative follow-up was 3.4 years. The pathological conditions were cervical spondylotic myelopathy in 42 and ossification of the posterior longitudinal ligament in 31.MRI (spin-echo sequence) was performed in all patients. Three patterns of spinal cord signal intensity changes on T1-weighted sequences/T2-weighted sequences were detected as follows: normal/ normal. (N/N); normal/ high signal intensity changes (N/Hi); and low signal intensity changes/high signal intensity changes (Lo/Hi). Surgical outcomes were compared among these three groups. The most useful combination of parameters for predicting prognosis was determined. There were 2 patients with N/N, 67 with N/Hi and 4 with Lo/Hi signal change patterns before surgery. Regarding postoperative recovery, the preoperative Lo/Hi group was significantly inferior to the preoperative N/Hi group. The best combination of predictors for surgical outcomes included age, preoperative signal pattern and duration of symptoms. The low signal intensity changes on T1-weighted sequences indicated a poor prognosis. We speculate that high signal intensity changes on T2-weighted images include a broad spectrum of compressive myelomalacid pathologies and reflect a broad spectrum of recuperative potentials of the spinal cord. Predictors for surgical outcomes are preoperative signal intensity change pattern of the spinal cord on radiological evaluations, age at the time of surgery and chronicity of the disease


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 19 - 19
1 May 2017
Deane J Joyce L Wang C Wiles C Lim A Strutton P McGregor A
Full Access

Introduction. The usefulness of markers of non-specific low back pain (NSLBP), including MRI derived measurements of cross-sectional area (CSA) and functional CSA (FCSA, fat free muscle area) of the lumbar musculature, is in doubt. To our knowledge, such markers remain unexplored in Lumbar Disc Degeneration (LDD), which is significantly associated with NSLBP, Modic change and symptom recurrence. This exploratory 3.0-T MRI study addresses this shortfall by comparing asymmetry and composition in asymptomatic older adults with and without Modic change. Methods. A sample of 21 healthy, asymptomatic subjects participated (mean age 56.9 years). T2-weighted axial lumbar images were obtained (L3/L4 to L5/S1), with slices oriented through the centre of each disc. Scans were examined by a Consultant MRI specialist and divided into 2 groups dependent on Modic presence (M) or absence (NM). Bilateral measurements of the CSA and FCSA of the erector spinae, multifidus, psoas major and quadratus lumborum were made using Image-J software. Muscle composition was determined using the equation [(FCSA/CSA)*100] and asymmetry using the equation [(Largest FCSA-smallest FCSA)/largest FCSA*100]. Data were analysed using Mann-Whitney U tests (p value set at). Intrarater reliability was examined using Intraclass Correlations (ICCs). Results. ICCs ranged between 0.74 and 0.96 for all area measurements, indicating excellent reliability. There was no significant difference in TCSA and FCSA asymmetry (P=0.1–1.0) and muscle composition (P=0.1–1.0) between M and NM groups. Conclusion. Modic change in the absence of pain does not appear to influence cross-sectional asymmetry or composition of the lumbar musculature. CSA remains a controversial marker. No conflicts of interest. Funding: This work is funded by an Allied Health Professional Doctoral Fellowship awarded to Janet Deane by Arthritis Research U.K


Bone & Joint Open
Vol. 5, Issue 4 | Pages 317 - 323
18 Apr 2024
Zhu X Hu J Lin J Song G Xu H Lu J Tang Q Wang J

Aims

The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours.

Methods

We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 42 - 42
1 Apr 2018
Gabler C Gierschner S Lindner T Tischer T Bader R
Full Access

The biomechanical evaluation of tendon repair with collagen-based scaffolds in rat model is a common method to determine the functional outcome of the tested material. We introduced a magnetic resonance imaging (MRI) approach to verify the biomechanical test data. In present study different collagen scaffolds for tendon repair were examined. Two collagen test materials: based on bovine stabilized collagen, chemically cross-linked with oriented collagenous fibres (material 1) and based on porcine dermal extracellular matrix, with no cross-linking (material 2) were compared. The animal study was approved by the local review board. Surgery was performed on male Sprague-Dawley rats with a body weight of 400 ± 19 g. Each rat underwent a 5 mm transection of the right Achilles tendon. The M. plantaris tendon was removed. The remaining tendon ends were re-joined with a 5 mm scaffold of either the material 1 or 2. Each scaffold material was sutured into place with two single stiches (Vicryl 4–0, Ethicon) each end. A total of 16 rats (n= 8 each group) were observed for 28 days follow up. The animals were sacrificed and hind limbs were transected proximal to the knee joint. MRI was performed using a 7 Tesla scanner (BioSpec 70/30, Bruker). T2-weighted TurboRARE sequences with an in-plane resolution of 0.12 mm and a slice thickness of 0.7 mm were analysed. All soft and hard tissues were removed from the Achilles tendon-calcaneus-foot complex before biomechanical testing. Subsequently, the specimens were fixed in a materials testing machine (Z1.0, Zwick, Ulm, Germany) for tensile testing. All tendons were preloaded with 1 N and subsequently stretched at a rate of 1 mm/s until complete failure was observed. Non-operated tendons were used as a control (n=4). After 28 postoperative days, MRI demonstrated that four scaffolds (material 1: n=2, material 2: n=2) were slightly dislocated in the proximal part of hind limb. In total five failures of reconstruction could be detected in the tendon repairs (material 1: n=3, material 2: n=2). Tendons augmented with the bovine material 1 showed a maximum tensile load of 57.9 ± 17.9 N and tendons with porcine scaffold material 2 of 63.1 ± 19.5 N. The native tendons demonstrated only slightly higher loads of 76.6 ± 11.6 N. Maximum failure load of the tendon-scaffold construct in both groups did not differ significantly (p < 0.05). Stiffness of the tendons treated with the bovine scaffold (9.9 ± 3.6 N/mm) and with the porcine scaffold (10.7 ± 2.7 N/mm) showed no differences. Stiffness of the native healthy tendon of the contralateral site was significantly higher (20.2 ± 6.6 N/mm, p < 0.05). No differences in the mechanical properties between samples of both scaffold groups could be detected, regardless of whether the repaired tendon defect has failed or the scaffold has been dislocated. The results show that MRI is important as an auxiliary tool to verify the biomechanical outcome of tendon repair in animal models


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 17 - 17
1 Feb 2016
Määttä J Wadge S MacGregor A Karppinen J Williams F
Full Access

Background and purpose of study:. Modic change (MC) describes vertebral endplate and bone marrow lesions visible on MRI. MC has been associated with disc degeneration (DD). Independent association of MC with low back pain (LBP) is unclear. The objectives of this study were to assess the relationship between MC and severe, disabling LBP; prevalence and features of DD and incident MC during 10-year follow-up. Methods and results:. Unselected TwinsUK volunteers were recruited to MRI and nurse interview in 1996–2000 (n=823): a subset attended for follow-up a decade later (n=429). T2-weighted lumbar MR scans were coded blindly for MC, DD (loss of disc height and signal intensity, disc bulge and anterior osteophytes) and Schmorl's nodes (SN). Mean baseline age = 54.0 (32–70) years with 96% female. Prevalence of MC was 32.2% (baseline) and 48.7% (follow-up). Univariable analyses showed subjects having MC were older (p<0.001) and more overweight (p=0.026). At both timepoints subjects reporting severe LBP episodes demonstrated more MC (both p<0.001) than those without LBP. In multivariable analyses, MC remained significantly associated with episodes of severe, disabling LBP (OR 1.58; 95% CI 1.04–2.41) even after adjustment for age, BMI, DD and SN. Loss of disc height and disc signal intensity were independently associated with prevalent MC at baseline, and disc height and disc bulge with incident MC during follow-up. Conclusions:. MC is associated with all disc features of DD but not anterior osteophytes. MC is an independent risk factor for episodes of severe and disabling LBP in middle-aged women


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 39 - 39
1 Nov 2016
Vallières M Freeman C Zaki A Turcotte R Hickeson M Skamene S Jeyaseelan K Hathout L Serban M Xing S Powell T Goulding K Seuntjens J Levesque I El Naqa I
Full Access

This is quite an innovative study that should lead to a multicentre validation trial. We have developed an FDG-PET/MRI texture-based model for the prediction of lung metastases (LM) in newly diagnosed patients with soft-tissue sarcomas (STSs) using retrospective analysis. In this work, we assess the model performance using a new prospective STS cohort. We also investigate whether incorporating hypoxia and perfusion biomarkers derived from FMISO-PET and DCE-MRI scans can further enhance the predictive power of the model. A total of 66 patients with histologically confirmed STSs were used in this study and divided into two groups: a retrospective cohort of 51 patients (19 LM) used for training the model, and a prospective cohort of 15 patients (two patients with LM, one patient with bone metastases and suspicious lung nodules) for testing the model. In the training phase, a model of four texture features characterising tumour sub-region size and intensity heterogeneities was developed for LM prediction from pre-treatment FDG-PET and MRI scans (T1-weighted, T2-weighted with fat saturation) of the retrospective cohort, using imbalance-adjusted bootstrap statistical resampling and logistic regression multivariable modeling. In the testing phase, this multivariable model was applied to predict the distant metastasis status of the prospective cohort. The predictive power of the obtained model response was assessed using the area under the receiver-operating characteristic curve (AUC). In the exploratory phase of the study, we extracted two heterogeneity metrics from the prospective cohort: the area under the intensity-volume histogram of pre-treatment DCE-MRI volume transfer constant parametric maps and FMISO-PET hypoxia maps (AU-IVH-Ktrans, AU-IVH-FMISO). The impact of the addition of these two individual metrics to the texture-based model response obtained in the testing phase was first investigated using Spearman's correlation (rs), and lastly using logistic regression and leave-one-out cross-validation (LOO-CV) to account for overfitting bias. First, the texture-based model reached an AUC of 0.94, a sensitivity of 1, a specificity of 0.83 and an accuracy of 0.87 when tested in the prospective cohort. In the exploratory phase, the addition of AU-IVH-FMISO did not improve predictive power, yielding a correlation of rs = −0.42 (p = 0.12) with lung metastases, and a relative change in validation AUC of 0% in comparison with the texture-based model response alone in LOO-CV experiments. In contrast, the addition of AU-IVH-Ktrans improved predictive power, yielding a correlation of rs = −0.54 (p = 0.04) with lung metastases, and a change in validation AUC of +10%. Our results demonstrate that texture-based models extracted from pre-treatment FDG-PET and MRI anatomical scans could be successfully used to predict distant metastases in STS cancer. Our results also suggest that the addition of perfusion heterogeneity metrics may contribute to improving model prediction performance


Bone & Joint Open
Vol. 4, Issue 6 | Pages 442 - 446
12 Jun 2023
Toda Y Iwata S Kobayashi E Ogura K Osaki S Fukushima S Mawatari M Kawai A

Aims

The risk of postoperative complications after resection of soft-tissue sarcoma in the medial thigh is higher than in other locations. This study investigated whether a vessel sealing system (VSS) could help reduce the risk of postoperative complications after wide resection of soft-tissue sarcoma in the medial thigh.

Methods

Of 285 patients who underwent wide resection for soft-tissue sarcoma between 2014 and 2021 at our institution, 78 patients with tumours in the medial thigh were extracted from our database. Information on clinicopathological characteristics, preoperative treatment, surgical treatment (use of VSS, blood loss volume, operating time), and postoperative course (complications, postoperative haemoglobin changes, total drainage volume, and drainage and hospitalization durations) were obtained from medical records. We statistically compared clinical outcomes between patients whose surgery did or did not use VSS (VSS and non-VSS groups, respectively).


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1343 - 1351
1 Dec 2022
Karlsson T Försth P Skorpil M Pazarlis K Öhagen P Michaëlsson K Sandén B

Aims

The aims of this study were first, to determine if adding fusion to a decompression of the lumbar spine for spinal stenosis decreases the rate of radiological restenosis and/or proximal adjacent level stenosis two years after surgery, and second, to evaluate the change in vertebral slip two years after surgery with and without fusion.

Methods

The Swedish Spinal Stenosis Study (SSSS) was conducted between 2006 and 2012 at five public and two private hospitals. Six centres participated in this two-year MRI follow-up. We randomized 222 patients with central lumbar spinal stenosis at one or two adjacent levels into two groups, decompression alone and decompression with fusion. The presence or absence of a preoperative spondylolisthesis was noted. A new stenosis on two-year MRI was used as the primary outcome, defined as a dural sac cross-sectional area ≤ 75 mm2 at the operated level (restenosis) and/or at the level above (proximal adjacent level stenosis).


Bone & Joint Open
Vol. 5, Issue 4 | Pages 350 - 360
23 Apr 2024
Wang S Chen Z Wang K Li H Qu H Mou H Lin N Ye Z

Aims

Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative systemic therapy, the efficacy of radiotherapy on local control (LC) and overall survival (OS) in patients with spinal metastases remains unknown. This study aimed to evaluate the clinical outcomes of post-surgical radiotherapy for spinal metastatic non-small-cell lung cancer (NSCLC) patients, and to identify factors correlated with LC and OS.

Methods

A retrospective, single-centre review was conducted of patients with spinal metastases from NSCLC who underwent surgery followed by systemic therapy at our institution from January 2018 to September 2022. Kaplan-Meier analysis and log-rank tests were used to compare the LC and OS between groups. Associated factors for LC and OS were assessed using Cox proportional hazards regression analysis.