Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Bone & Joint Open
Vol. 2, Issue 9 | Pages 696 - 704
1 Sep 2021
Malhotra R Gautam D Gupta S Eachempati KK

Aims

Total hip arthroplasty (THA) in patients with post-polio residual paralysis (PPRP) is challenging. Despite relief in pain after THA, pre-existing muscle imbalance and altered gait may cause persistence of difficulty in walking. The associated soft tissue contractures not only imbalances the pelvis, but also poses the risk of dislocation, accelerated polyethylene liner wear, and early loosening.

Methods

In all, ten hips in ten patients with PPRP with fixed pelvic obliquity who underwent THA as per an algorithmic approach in two centres from January 2014 to March 2018 were followed-up for a minimum of two years (2 to 6). All patients required one or more additional soft tissue procedures in a pre-determined sequence to correct the pelvic obliquity. All were invited for the latest clinical and radiological assessment.


Bone & Joint Open
Vol. 3, Issue 4 | Pages 314 - 320
7 Apr 2022
Malhotra R Batra S Sugumar PA Gautam D

Aims. Adult patients with history of childhood infection pose a surgical challenge for total hip arthroplasty (THA) due to distorted bony anatomy, soft-tissue contractures, risk of reinfection, and relatively younger age. Therefore, the purpose of the present study was to determine clinical outcome, reinfection rate, and complications in patients with septic sequelae after THA. Methods. A retrospective analysis was conducted of 91 cementless THAs (57 male and 34 female) performed between 2008 and 2017 in patients who had history of hip infection during childhood. Clinical outcome was measured using Harris Hip Score (HHS) and Modified Merle d’Aubigne and Postel (MAP) score, and quality of life (QOL) using 12-Item Short Form Health Survey Questionnaire (SF-12) components: Physical Component Score (PCS) and Mental Component Score (MCS); limb length discrepancy (LLD) and radiological assessment of the prosthesis was performed at the latest follow-up. Reinfection and revision surgery after THA for any reason was documented. Results. There was significant improvement in HHS, Modified Merle d’Aubigne Postel hip score, and QOL index SF 12-PCS and MCS (p < 0.001) and there was no case of reinfection reported during the follow-up. The minimum follow-up for the study was three years with a mean of 6.5 (SD 2.3; 3 to 12). LLD decreased from a mean of 3.3 cm (SD 1) to 0.9 cm (SD 0.8) during follow-up. One patient required revision surgery for femoral component loosening. Kaplan-Meier survival analysis estimated revision-free survivorship of 100% at the end of five years and 96.9% (95% confidence interval 79.8 to 99.6) at the end of ten years. Conclusion. We found that cementless THA results in good to excellent functional outcomes in patients with a prior history of childhood infection. There is an exceedingly low rate of risk of reinfection in these patients, even though complications are not uncommon. Cite this article: Bone Jt Open 2022;3(4):314–320


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 19 - 19
1 May 2019
Williams G
Full Access

Glenoid exposure is the name of the game in total shoulder arthroplasty. I can honestly say that it took me more than 5 years but less than 10 to feel confident exposing any glenoid, regardless of the degree of bone deformity and the severity of soft-tissue contracture. This lecture represents the synthesis of my experience exposing some of the most difficult glenoids. The basic principles are performing extensive soft-tissue release, minimizing the anteroposterior dimension of the humerus by osteophyte excision, making an accurate humeral neck cut, having a plethora of glenoid retractors, and knowing where to place them. The ten tips, in reverse order of importance are: 10.) Tilt the table away from operative side—this helps face the surface of the glenoid, especially in cases of posterior wear, toward the surgeon. 9.) Have multiple glenoid retractors—these include a large Darrach, a reverse double-pronged Bankart, one or two blunt Homans, small and large Fukudas. 8.) Remove all humeral osteophytes before attempting to retract the humerus posteriorly to expose the glenoid—this helps to decrease the overall anteroposterior dimension of the humerus and allows for maximum posterior displacement of the humerus. 7.) Make an accurate humeral neck cut—even 5mm of extra humeral bone will make glenoid exposure difficult. 6.) Optimal humeral position—it has been taught that abduction, external rotation, and extension is the optimal position. It may vary with each case. Therefore, experiment with humeral rotation to find the position that allows maximum visualization. This is often the position that makes the cut surface of the humerus parallel to the surface of the glenoid. 5.) Optimal retractor placement—my typical retractor placement is a Fukuda on the posterior lip of the glenoid, a reverse double-pronged Bankart on the anterior neck of the scapula, and a blunt Homan posterosuperiorly. Occasionally, a second blunt Homan anteroinferiorly is helpful, particularly in muscular males with a large pectoralis major. 4.) Laminar spreader for lateral humeral displacement—this can be helpful for posterior capsulorrhaphy or for posterior glenoid bone grafting. 3.) Maximal humeral capsular release—the release of the anterior capsule from the humerus must go well past the 6 o'clock position and up the posterior surface of the humerus. This aides in humeral exposure but also allows for more posterior displacement of the humerus during glenoid exposure. 2.) Anteroinferior capsular release or excision—extensive anteroinferior release or excision (my preference), allows for maximal posterior humeral displacement and also restores external rotation. 1.) Posterior or posteroinferior capsular release—release of the posteroinferior corner of the capsule from the glenoid results in a noticeable increase in posterior humeral retractability. In cases without substantial posterior subluxation, extensive release of the entire posterior capsule is performed


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 100 - 100
1 Feb 2015
Mullaji A
Full Access

Deformity can be associated with significant bone loss, ligament laxity, soft-tissue contractures, distortion of long bone morphology, and extra-articular deformity. Correction of varus, valgus, or flexion deformity requires soft tissue releases in conjunction with bone cuts perpendicular to the long axes of the femur and tibia. Cruciate-retaining or -substituting implants can be used based on surgeon preference if the ligaments are well balanced. However, in presence of severe deformity, additional measures may be warranted to achieve alignment and balance. TKA then becomes a more challenging proposition and may require the surgeon to perform extensive releases, adjunct osteotomies and deploy more constrained implants. Merely enhancing constraint in the implant however without attending to releases and extra-articular correction may not suffice. Certain myths in deformity correction will be presented. Technical tips with regard to preoperative planning, i.e., whether intra-articular correction alone will suffice or extra-articular correction is required, will be highlighted. Surgical principles and methods of performing large releases, reduction osteotomy, lateral epicondylar sliding osteotomy, sliding medial condylar osteotomy, and closed wedge diaphyseal/metaphyseal osteotomy concomitantly with TKA will be illustrated with examples. Technique of performing TKA with concomitant extra-articular deformity resulting from coronal bowing of femoral or tibial diaphysis, malunited fractures, prior osteotomies, and stress fractures will be presented. The techniques reported can successfully restore alignment, pain-free motion, and stability without necessarily using more constrained implants


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 19 - 19
1 Aug 2017
Williams G
Full Access

Glenoid exposure is the name of the game in total shoulder arthroplasty. I can honestly say that it took me more than 5 years but less than 10 to feel confident exposing any glenoid, regardless of the degree of bone deformity and the severity of soft-tissue contracture. This lecture represents the synthesis of my experience exposing some of the most difficult glenoids. The basic principles are performing extensive soft-tissue release, minimizing the anteroposterior dimension of the humerus by osteophyte excision, making an accurate humeral neck cut, having a plethora of glenoid retractors, and knowing where to place them. The ten tips, in reverse order of importance are: 10.) Tilt the table away from operative side—this helps face the surface of the glenoid, especially in cases of posterior wear, toward the surgeon. 9.) Have multiple glenoid retractors—these include a large Darrach, a reverse double-pronged Bankart, one or two blunt Homans, small and large Fukudas. 8.) Remove all humeral osteophytes before attempting to retract the humerus posteriorly to expose the glenoid—this helps to decrease the overall anteroposterior dimension of the humerus and allows for maximum posterior displacement of the humerus. 7.) Make an accurate humeral neck cut—even 5mm of extra humeral bone will make glenoid exposure difficult. 6.) Optimal humeral position—it has been taught that abduction, external rotation, and extension is the optimal position. It may vary with each case. Therefore, experiment with humeral rotation to find the position that allows maximum visualization. This is often the position that makes the cut surface of the humerus parallel to the surface of the glenoid. 5.) Optimal retractor placement—my typical retractor placement is a Fukuda on the posterior lip of the glenoid, a reverse double-pronged Bankart on the anterior neck of the scapula, and a blunt Homan posterosuperiorly. Occasionally, a second blunt Homan anteroinferiorly is helpful, particularly in muscular males with a large pectoralis major. 4.) Laminar spreader for lateral humeral displacement—this can be helpful for posterior capsulorrhaphy or for posterior glenoid bone grafting. 3.) Maximal humeral capsular release—the release of the anterior capsule from the humerus must go well past the 6 o'clock position and up the posterior surface of the humerus. This aides in humeral exposure but also allows for more posterior displacement of the humerus during glenoid exposure. 2.) Anteroinferior capsular release or excision—extensive anteroinferior release or excision (my preference), allows for maximal posterior humeral displacement and also restores external rotation. 1.) Posterior or posteroinferior capsular release—release of the posteroinferior corner of the capsule from the glenoid results in a noticeable increase in posterior humeral retractability. In cases without substantial posterior subluxation, extensive release of the entire posterior capsule is performed. Following these steps will help the surgeon to gain adequate glenoid exposure, even in the most difficult cases


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 33 - 33
1 Jul 2014
Mullaji A
Full Access

Deformity can be associated with significant bone loss, ligament laxity, soft-tissue contractures, distortion of long bone morphology, and extra-articular deformity. Correction of varus, valgus, or flexion deformity requires soft tissue releases in conjunction with bone cuts perpendicular to the long axes of the femur and tibia. Cruciate-retaining or -substituting implants can be used based on surgeon preference if the ligaments are well balanced. However, in presence of severe deformity, additional measures may be warranted to achieve alignment and balance. TKA then becomes a more challenging proposition and may require the surgeon to perform extensive releases, adjunct osteotomies and deploy more constrained implants. Merely enhancing constraint in the implant, however, without attending to releases and extra-articular correction may not suffice. Pre-operative planning, i.e., whether intra-articular correction alone will suffice or extra-articular correction is required, will be highlighted. Surgical principles and methods of performing large releases, reduction osteotomy, lateral epicondylar sliding osteotomy, sliding medial condylar osteotomy, and closed wedge diaphyseal/metaphyseal osteotomy concomitantly with TKA will be illustrated with examples. Results of a large series of TKA with extra-articular deformity resulting from coronal bowing of femoral or tibial diaphysis, malunited fractures, prior osteotomies, and stress fractures will be presented. The techniques reported can successfully restore alignment, pain-free motion, and stability without necessarily using more constrained implants


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 85 - 85
1 May 2014
Mullaji A
Full Access

Deformity can be associated with significant bone loss, ligament laxity, soft-tissue contractures, distortion of long bone morphology, and extra-articular deformity. Correction of varus, valgus, or flexion deformity requires soft tissue releases in conjunction with bone cuts perpendicular to the long axes of the femur and tibia. Cruciate-retaining or -substituting implants can be used based on surgeon preference if the ligaments are well balanced. However, in presence of severe deformity, additional measures may be warranted to achieve alignment and balance. TKA then becomes a more challenging proposition and may require the surgeon to perform extensive releases, adjunct osteotomies and deploy more constrained implants. Merely enhancing constraint in the implant however without attending to releases and extra-articular correction may not suffice. Preoperative planning, i.e., whether intra-articular correction alone will suffice or extra-articular correction is required, will be highlighted. Surgical principles and methods of performing large releases, reduction osteotomy, lateral epicondylar sliding osteotomy, sliding medial condylar osteotomy, and closed wedge diaphyseal/metaphyseal osteotomy concomitantly with TKA will be illustrated with examples. Results of a large series of TKA with extra-articular deformity resulting from coronal bowing of femoral or tibial diaphysis, malunited fractures, prior osteotomies, and stress fractures will be presented. The techniques reported can successfully restore alignment, pain free motion, and stability without necessarily using more constrained implants


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_17 | Pages 22 - 22
1 Nov 2014
Willmott H Smith J Taylor H
Full Access

Introduction:. The cavovarus foot is a complex deformity caused by muscle imbalance, soft-tissue contracture and secondary bony abnormality. It is a combination of hindfoot, midfoot and forefoot deformity and the decision making process for surgical management can be difficult. The process of deciding which combination of procedures is required is often poorly understood. We present an algorithm to assist with this decision making. Methods:. We have analysed a single surgeon's experience of cavovarus foot correction, from a consecutive series of 50 patients over 5 years, to develop an algorithm to guide operative decision making. Cases included cavovarus deformity secondary to cerebral palsy, Friedreich's ataxia, Charcot Marie Tooth disease, post-traumatic contracture, post-cerebrovascular accident, iatrogenic post-surgery and physiological cavus. We have taken a systematic approach to each component of the deformity in order to generate the algorithm. Results:. To assist in rationalising the traditional ‘a-la-carte’ approach, our algorithm describes what we believe are the indications for a variety of surgical interventions, including soft tissue contracture release, osteotomies of the hindfoot, midfoot and forefoot, tendon transfer and soft tissue balancing, and arthrodesis. We detail the decision making process for each surgical option and give the reasons for each decision. We have also reviewed the available literature on this topic, to produce an evidence-based and useable tool for surgical planning. Conclusion:. The surgical decision making process in the management of the cavovarus foot is complex. We believe that this algorithm, based on extensive personal experience and up-to-date published evidence, provides a clear and proven framework on which surgical decision making can be guided and justified


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 325 - 325
1 Jul 2011
Meani E
Full Access

Two-stage revision is the most widely accepted and performed intervention for chronically infected joint prosthesis. The choice of this option relies on the following considerations:. higher antibiotic concentrations may be used in the spacers, compared to the cement used for prosthetic fixation in a single-stage procedure, since high dose antibiotic-loaded cement may be too fragile for long term prosthesis fixation (Bucholz, 1986);. the frequent occurrence of bone loss and the smooth cortical bone surface, encountered at revision may prevent effective cementing;. two-stage revision allows the use of uncemented modular stems, useful for intra-operatively balancing legs’ length, offset and muscular tension;. distal fixation allows to overcome proximal frequent bone loss;. bone grafts, eventually plus growth factors, may be safely added;. a second debridment may enhance the possibility of eradicating the infection;. there is a large and growing international literature evidence in support to this option. Two-stage reimplantation using an articulated interval spacer of antibiotic-impregnated bone-cement has been previously investigated and proved as an effective Method:. to adequately fill the void created by the implant removal,. to prevent limb shortening and soft-tissue contracture,. to allow a better function,. to provide local antibiotic therapy,. to eradicate infection,. to facilitate reimplantation. However a considerable variation in the form and function of interval spacers exists. A spacer may in fact be commercially made, or it may be custom-made in the operating room. It may be made entirely of polymethylmethacrylate cement, or it may be a cement-coated metal composite. Favorable results have been reported with each of these types of spacers. Preformed antibiotic-loaded spacers (InterSpace® Hip and InterSpace® Knee, Tecres SpA, Verona, Italy – Hexactech Inc. Gainesville, Florida) offer:. known mechanical resistance;. predictable antibiotic release;. reduced surgical time;. joint function preservation and partial weight bearing;. standardized technique. In particular, as to concern the hip, their most peculiar feature is their availability in short and long stem shapes, that allows to overcome frequent proximal femoral bone defects. Acceptable costs (< 5% of the total costs for a two-stage procedure)


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 325 - 325
1 Jul 2011
Romano CL
Full Access

Two-stage revision is the most widely accepted and performed intervention for chronically infected joint prosthesis. The choice of this option relies on the following considerations:. higher antibiotic concentrations may be used in the spacers, compared to the cement used for prosthetic fixation in a single-stage procedure, since high dose antibiotic-loaded cement may be too fragile for long term prosthesis fixation (Bucholz, 1986);. the frequent occurrence of bone loss and the smooth cortical bone surface, encountered at revision may prevent effective cementing;. two-stage revision allows the use of uncemented modular stems, useful for intra-operatively balancing legs’ length, offset and muscular tension;. distal fixation allows to overcome proximal frequent bone loss;. bone grafts, eventually plus growth factors, may be safely added;. a second debridment may enhance the possibility of eradicating the infection;. there is a large and growing international literature evidence in support to this option. Two-stage reimplantation using an articulated interval spacer of antibiotic-impregnated bone-cement has been previously investigated and proved as an effective Method:. to adequately fill the void created by the implant removal,. to prevent limb shortening and soft-tissue contracture,. to allow a better function,. to provide local antibiotic therapy,. to eradicate infection,. to facilitate reimplantation. However a considerable variation in the form and function of interval spacers exists. A spacer may in fact be commercially made, or it may be custom-made in the operating room. It may be made entirely of polymethylmethacrylate cement, or it may be a cement-coated metal composite. Favorable results have been reported with each of these types of spacers. Preformed antibiotic-loaded spacers (InterSpace® Hip and InterSpace® Knee, Tecres SpA, Verona, Italy – Hexactech Inc. Gainesville, Florida) offer:. known mechanical resistance;. predictable antibiotic release;. reduced surgical time;. joint function preservation and partial weight bearing;. standardized technique. In particular, as to concern the hip, their most peculiar feature is their availability in short and long stem shapes, that allows to overcome frequent proximal femoral bone defects. Acceptable costs (< 5% of the total costs for a two-stage procedure)


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 17
1 Mar 2002
Krauspe R Wess K Raab P Stahl U Ronneberger D Fietzek P
Full Access

The objective of our research is to elucidate the pathogenesis of soft-tissue contracture. Here we present a comparison of collagens isolated from deltoid ligament of 23 clubfeet classified according to the Dimeglio-classification and of 14 matched controls of normal feet. Collagens were isolated by acetic acid extraction and by limited pepsin-solubilisation and analysed by SDS-PAGE. Ligaments and solubilised collagens were analysed for their extent of hydroxylation of prolyl- and lysyl-residues, their content of galactosyl-hydroxylysine and glucosyl-galacto-syl-hydroxylysine and their content of lysyl-oxidase dependent cross-links histidinohydroxylysino-norleucine (HHL), hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP). Analysis were carried out using an amino acid analyser (Bio-chrom 20, Amersham Pharmacia Biotech) and a reverse-phase HPLC system (Gynkothek). Percentage of collagen of total protein decreases in club-foot as compared to controls. SDS-PAGE of solubilised collagens shows a high content of type I, less of type III and small amounts of type V collagen in both groups. The extent of hydroxylation of proline appears to be very similar, whereas the degree of hydroxylation of lysine follows the Dimeglio-classification. In addition, glycosylation of hydroxylysine increases parallelly to the classification. However, the increase is found solely in the amount of disac-charides. Total content of HHL, the most important collagen cross-link in soft tissues, was increased significantly in club-feet as compared to controls. HP, the hard tissue specific collagen cross-link was increased slightly in clubfeet. Levels of LP were too low to detect differences precisely. The data presented show distinct differences in the post-translational modifications of collagen (hydroxylation of lysyl-residues, glycosylation and lysyl-oxidase dependent cross-links) isolated from congenital idiopathic clubfeet and from controls


Bone & Joint Open
Vol. 4, Issue 1 | Pages 19 - 26
13 Jan 2023
Nishida K Nasu Y Hashizume K Okita S Nakahara R Saito T Ozaki T Inoue H

Aims

There are concerns regarding complications and longevity of total elbow arthroplasty (TEA) in young patients, and the few previous publications are mainly limited to reports on linked elbow devices. We investigated the clinical outcome of unlinked TEA for patients aged less than 50 years with rheumatoid arthritis (RA).

Methods

We retrospectively reviewed the records of 26 elbows of 21 patients with RA who were aged less than 50 years who underwent primary TEA with an unlinked elbow prosthesis. The mean patient age was 46 years (35 to 49), and the mean follow-up period was 13.6 years (6 to 27). Outcome measures included pain, range of motion, Mayo Elbow Performance Score (MEPS), radiological evaluation for radiolucent line and loosening, complications, and revision surgery with or without implant removal.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 486 - 494
4 Apr 2022
Liu W Sun Z Xiong H Liu J Lu J Cai B Wang W Fan C

Aims

The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow.

Methods

We developed the Shanghai Prediction Model for Elbow Stiffness Surgical Outcome (SPESSO) based on a dataset of 551 patients who underwent open arthrolysis of the elbow in four institutions. Demographic and clinical characteristics were collected from medical records. The least absolute shrinkage and selection operator regression model was used to optimize the selection of relevant features. Multivariable logistic regression analysis was used to build the SPESSO. Its prediction performance was evaluated using the concordance index (C-index) and a calibration graph. Internal validation was conducted using bootstrapping validation.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 174 - 180
17 Mar 2021
Wu DY Lam EKF

Aims

The purpose of this study is to examine the adductus impact on the second metatarsal by the nonosteotomy nonarthrodesis syndesmosis procedure for the hallux valgus deformity correction, and how it would affect the mechanical function of the forefoot in walking. For correcting the metatarsus primus varus deformity of hallux valgus feet, the syndesmosis procedure binds first metatarsal to the second metatarsal with intermetatarsal cerclage sutures.

Methods

We reviewed clinical records of a single surgical practice from its entire 2014 calendar year. In total, 71 patients (121 surgical feet) qualified for the study with a mean follow-up of 20.3 months (SD 6.2). We measured their metatarsus adductus angle with the Sgarlato’s method (SMAA), and the intermetatarsal angle (IMA) and metatarsophalangeal angle (MPA) with Hardy’s mid axial method. We also assessed their American Orthopaedic Foot & Ankle Society (AOFAS) clinical scale score, and photographic and pedobarographic images for clinical function results.


Bone & Joint 360
Vol. 5, Issue 3 | Pages 10 - 12
1 Jun 2016


Bone & Joint 360
Vol. 1, Issue 3 | Pages 28 - 30
1 Jun 2012

The June 2012 Children’s orthopaedics Roundup360 looks at; open reduction for DDH; growing rod instrumentation for scoliosis; acute patellar dislocation; management of the relapsed clubfoot; clubfoot in Iran; laughing gas and fracture manipulation; vascularised periosteal fibular grafting for nonunion; slipped upper femoral epiphysis; intramedullary leg lengthening and orthopaedic imaging and defensive medicine.