Advertisement for orthosearch.org.uk
Results 1 - 20 of 97
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 412 - 412
1 Nov 2011
Kim Y Kim J Huh W Lee K
Full Access

Although total knee arthroplasty (TKA) has been a reliable procedure providing durable pain relief, polyethylene (PE) wear remains a major limitation of the long-term success of TKA. One potential method of lowering PE wear in TKA is to use oxidized zirconium (OxZr)-bearing surface. Although wear simulating testing of an OxZr counter surface of femoral component produced less PE wear and fewer particles than did cobalt-chrome (Co-Cr) counter surface of femoral component [1–4], this finding has not been demonstrated in vivo to our knowledge. We measured in vivo PE wear by isolating and analyzing PE wear particles in synovial fluid from wellfunctioning TKA [5]. The purpose of the current study was to determine the size, shape, and amount of PE wear particles isolated from synovial fluid of patients who underwent a bilateral simultaneous TKA prosthesis, but different materials of femoral components. We performed a bilateral simultaneous TKA in 100 patients (200 knees) who received an OxZr femoral component in one knee and a Co-Cr femoral component in the other. Mean age was 55.6 (44–60) years. Synovial fluid was obtained from 28 patients (56 knees) who had undergone a simultaneous bilateral TKA under completely sterile conditions at one or two years after the operation. Randomization to an OxZr or Co-Cr femoral component was accomplished with use of a sealed study number envelope, which was opened in the operating room before the skin incision had been made. After the opening the randomization envelope, the first knee received prosthesis indicated by the envelope (OxZr or Co-Cr component) and the contralateral (second TKA) knee received the other prosthesis (OxZr or Co-Cr component). All operations were performed by one surgeon using the same design of total knee prosthesis: Genesis II (Smith and Nephew, Memphis, Tennessee). Only the material of the femoral component differed between two groups. The preoperative diagnosis was osteoarthritis in all patients. Preoperative and post operative KS and HSS knee scores, KS functional scores and UCLA activity scores were evaluated. The amount of polyethylene wear particles in the aspirated synovial fluid sample was analyzed by thermogravimetic analysis (TGA) using a TGA instrument (TGA/SDTA 84le model, Mettler Toledo CO., Greifensee, Switzerland). The weight of the sample solution was measured before and after removing the organic content by heating the sample solution. The sample solution was casted onto petri dishes. The petri dish was covered and kept in a dry oven at 60°C for 2 days. While the sample solution was kept in a dry oven for 2 days, a small hole was made on the cover of the petri dish to allow water to evaporate slowly for 2 days. After this procedure, the cover of petri dish was removed and TGA sample was dried at 60°C for another 2 days. After the sample was completely dried out, the dried sample was measured using analytical balance. TGA was used to determine the weight change profiles of polyethylene subject to heating under a nitrogen atmosphere. The nitrogen flow rate was kept constant at 50mL per minute. TGA data were taken at heating rate as 5°C per minute in the temperature range of 20° to 1000°C. The weight loss data were recorded as a function of time and temperature using special software in computer. When the temperature reached to the point of decomposition of the sample, the sample started to lose weight. By calculating the weight of the sample around the temperature which led to start to decomposition, real amount of polyethylene in the sample was measured. The size and shape of PE particles were examined using scanning electron microscopy (JSH-6360A model, Jeol Co., Tokyo, Japan). The samples were coated using a platinum sputtering machine for 20 sec. ANOVA, nonparametric chi square test, nonpaired t-test and Mann-Whitney U-test were used for statistical analyses. Differences of P< 0.05 were considered statistically significant. Mean preoperative KS (27.5 vs 27.2 points) scores, HSS (51.1 vs 51.2 points) knee scores, KS functional scores (55.4 vs 55.4 points) and UCLA activity scores (2.8 vs 2.8 point) were not significantly different between two groups. Mean postoperative KS (93 vs 92 points), HSS knee scores (90 vs 89 points), KS functional scores (78 vs 78 points), and UCLA activity scores (7.8 vs 7.8) were not significantly different. Mean weight of the polyethylene particles was 0.0219 g (SD, 0.0058) in the Co-Cr femoral component groups and it was 0.0214 g (SD, 0.005) in the OxZr group. This difference was not significant (P=0.711139, paired t-test). The size of particles was not different between the two groups. Also, shape of particles was not different between the two groups. Under the condition and the duration of this study in this specific group of patients, TKA with OxZr or Co-CR femoral knee component had excellent clinical and radiographic outcomes with no osteolysis. While the wear simulator test in vitro demonstrated significant decrease in PE particles in the knees with an OxZr femoral component, our study in vivo revealed that total particle weight, size, and shape of PE wear particles were similar in the knees with an OxZr femoral component and in those with a Co-Cr femoral component


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 33 - 33
1 Mar 2009
Banks S Mitchell K Harman M Leslie C Hodge W
Full Access

There is interest to provide total knee arthroplasty (TKA) patients large ranges of functional knee flexion. Factors contributing to flexion include a posterior femoral position on the tibia, posterior condylar offset, and posterior tibial slope. These factors can be incorporated into implant designs and surgical techniques. It is useful to assess the robustness of the resulting design, that is, the consistency of kinematic or functional results when patient and surgical factors vary widely. This study evaluates in vivo flexion performance of a single implant design in patients whose posterior cruciate ligament (PCL) was either retained or sacrificed.

28 knees in 20 patients were imaged using fluoroscopy during maximum flexion kneeling and lunge activities. 20 knees (12 patients) received TKA with the PCL retained by a bone block (PCL+ group). Eight knees (7 patients) received TKA with complete PCL resection (PCL- group). All knees received a fixed-bearing TKA (3D Knee, Encore Medical, Austin, TX) with an asymmetric tibial bearing having a sagittally curved medial compartment and a lateral compartment fully congruous with the lateral condyle in extension (approximating anterior cruciate ligament substitution). Three-dimensional knee kinematics were determined using model-based shape registration techniques.

For the kneeling activity, mean implant flexion was 124°±11° for PCL+ knees and 121°±17° for PCL- knees (p> 0.05), mean tibial internal rotation was 10°±4° for PCL+ knees and 9°±3° for PCL- knees (p> 0.05) and tibial valgus was −1°±1° for PCL+ knees and 2°±4° for PCL- knees (p=0.003). Medial contact location averaged −2±4mm and for PCL+ knees and −1±2mm for PCL- knees (p> 0.05). Lateral contact location averaged −10±4mm for PCL+ knees and −7±1mm for PCL- knees (p> 0.05). For the lunge activity, mean implant flexion was 120°±11° for PCL+ knees and 121°±21° for PCL- knees (p> 0.05), mean tibial internal rotation was 11°±4° for PCL+ knees and 8°±3° for PCL- knees (p> 0.05) and tibial valgus was −1°±1° for PCL+ knees and 2°±2° for PCL- knees (p=0.0002). Medial contact location averaged 0±4mm for PCL+ knees and −4±3mm for PCL- knees (p=0.04). Lateral contact location averaged −8±4mm for PCL+ knees and −9±4mm for PCL- knees (p> 0.05).

There was no difference in implant flexion between PCL retaining and sacrificing TKA. Both groups had knees with more than 145° implant flexion (~155° skeletal flexion). There were no significant differences in tibial rotation or lateral condylar contact locations. There were differences in tibial valgus for both activities. PCL- knees exhibited a tendency for the medial compartment to ‘book open’ with flexion beyond 130°, consistent with loss of PCL function. Based on this small cohort comparison, it appears that robust flexion performance and knee kinematics can be obtained with a fixed-bearing TKA design.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 31 - 31
1 Jul 2022
Lodge C Matar H Berber R Radford P Bloch B
Full Access

Abstract. Aims. Ceramic coatings in total knee arthroplasty have been introduced with the aim of reducing wear and consequently improving implant survivorship. We studied both cobalt-chrome-molybdenum and ceramic-coated components of the same implant design from a single centre to identify if the ceramic coating conferred any benefit at mid-term review. Patients and Methods. We identified 1641 Columbus TKAs (Aesculap AG, Tüttlingen, Germany) from a prospectively collected arthroplasty database. 983 were traditional CoCrMo and 659 had the AS ceramic coating. Patients were followed up until death or revision of the implant. Results. A slightly younger patient population was seen in the AS ceramic cohort which was statistically significant, mean 68.3 (p=<0.0001). There was no significant difference in implant survivorship between the CoCrMo femur and the ceramic coated femur at a mean of 9.2 years follow-up for the CoCrMo group and 5 years for the ceramic coated group (p=0.76). There was no reduction in the proportion of components revised for aseptic loosening or infection in the ceramic coated cohort. Conclusion. The reported benefits of ceramic coatings are note clearly demonstrated within our current cohort. All knee replacements within our cohort were performed by a user of both CoCrMo and AS and therefore implant familiarity does not explain the revision rate within the AS cohort. At mid-term follow-up, there was no benefit in terms of implant survivorship in using a ceramic coating


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 63 - 63
1 Feb 2020
Darwish O Langhorn J Van Citters D Metcalfe A
Full Access

Introduction. Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals. Materials and Methods. Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC. ®. All Poly (n=14), ATTUNE. ®. Anatomic (n=6), and ATTUNE. ®. Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code. Results. Burnishing heat-map comparisons between retrievals and simulator specimens for each of the three designs were compared. Retrievals show more variation than simulator devices, however the general loci and relative area of burnished regions is closely aligned for each of the three designs. The retrieved and simulated burnishing scar heat-maps on all-poly PFC. ®. patellae are centered medio-laterally with a wider profile on the lateral aspect. The burnishing marks are continuous. A similar observation may be made of the ATTUNE. ®. medialized dome, retrievals and simulator specimens, though the contact areas appear to be more concentrated away from the apex. The anatomic patellae show two primary regions of contact, and minimal burnishing at the apex. The simulator specimens likewise show two principal regions of contact. Discussion. Wear scar analysis shows that joint simulation on AMTI VIVO yields clinically relevant wear patterns across a variety of device types. Clinically relevant damage provides insight that load and motion inputs to the simulator deliver results that may be used to interpret in vivo performance or analyze future designs and/or materials. This qualitative surface contact analysis will help to inform future quantitative mass loss and fatigue failure studies. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 38 - 38
1 May 2019
Viner J Sochart D
Full Access

Introduction. The Opera acetabular component (Smith & Nephew Ltd) shares many same design features with the Ogee (Depuy Int.). Differences are a malleable flange, instrumentation designed to improve cement pressurisation and the specifics of the UHMW-poly used. Methods. Data was collected prospectively on 419 consecutive replacements (390 patients), performed between March 2000 and February 2005. A posterior approach was used, and the acetabulum was prepared with multiple key holes. Palacos-R bone cement containing Gentamicin was used with a cement pressuriser. Results. There were 243 Operas (221 patients) and 176 Ogees (169 patients). There were 262 in female patients (62.5%) and age at surgery averaged 68.3yrs (25–92). Average follow-up of surviving patients was 185 months (165 – 225). Acetabular abduction angle in both groups averaged 46° (25–65). Opera group: 27 (11.1%) acetabular components loosened aseptically, all associated with rapid wear. 16 (6.6%) acetabular components were revised (15 (6.2%) - aseptic loosening and 1 late infection. At 10 years 85% were graded Hodgkinson 0 or 1. Six femoral implants loosened (2.5%), 2 of which have been revised. Ogee group: 3 acetabular components (1.7%) were revised (2 - aseptic loosening (1.1%) and 1 for recurrent dislocation). None are currently loose. At 10 years 99% were graded Hodgkinson 0 or 1. There was no femoral loosening. Conclusions. In the Opera group aseptic acetabular loosening (11.1% v 1.1%), acetabular revision for aseptic loosening (6.2 v 1.1%), aseptic femoral loosening (2.5% v 0) and Hodgkinson grading > 1 at 10 years (15% v 1%) were more common and associated with rapid wear. This must be attributable to poorer wear properties of the UHMW-poly of the Opera implant and patients with these components require regular surveillance to detect loosening


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 48 - 48
1 Apr 2019
Dharia M Mani S
Full Access

INTRODUCTION. Finite element analysis (FEA) is widely used to study micromotion between the glenoid baseplate and bone, as a pre-clinical indicator for clinical stability in reverse total shoulder arthroplasty (rTSA). Various key parameters such as the number, length, and angle of screws have been shown to influence micromotion [1]. This study explores the influence of screw preloads, an insufficiently studied parameter. Specifically, two rTSA configurations with 18mm and 48mm peripheral screws (PS) were analyzed without screw preloads, followed by analysis of the 48mm PS configuration with an experimentally measured screw preload. METHODS. FEA models were created to simulate a fixation experiment inspired by ASTM F2028-14. The rTSA configurations used here have a superior and an inferior PS. The assemblies were virtually implanted into a synthetic bone block as per surgical technique. Sliding contacts were defined to model the interface between screw threads-bone, and between baseplate-bone. To determine the screw preload experimentally, the 48mm screw (n=5) was inserted through a hole in a metal plate, which rested on top of a Futek washer load cell, placed on top of the foam block with a predrilled pilot hole (Figure 1). The screw was inserted using a torque driver until the average human factors torque for the screw driver handle was reached. The resulting axial compressive load due to screw insertion was measured by the washer load cell. Two step analyses were performed using Ansys version 17.2 for 18mm and 48mm PS, where 756N axial and shear loads were applied sequentially. The model with the 48mm PS was then analyzed in a four step analysis; preload inferior and superior screws, followed by applying the axial and shear loads (Figure 2). Peak overall micromotion including tangential and normal components at the baseplate-bone interface was compared for all three models. RESULTS. From the experimental study, the mean screw preload for the 48mm screw was determined to be 141±8 lbs. Peak micromotion was predicted at the inferior edge of the baseplate (Figure 3A). In the two models without screw preloads, the model with the 48mm PS predicted 42% lower micromotion than the model with the 18mm PS. The 48mm PS model predicted 63% further reduction in micromotion by including the preload for the two PS. Figure 3B presents the micromotion comparison between these three models. DISCUSSION. This study demonstrates the significant influence that screw preload can have on evaluating either absolute values or differential performance of rTSA micromotion within the same design family. It further demonstrated that the inclusion of preload in simulation can have as much (or greater) impact on micromotion as other key parameters such as shorter versus longer screws. These findings indicates that it is important to include appropriate values of screw preloads in simulations when comparing designs with different number of peripheral screws or studying the effects of including a central screw on rTSA micromotion


Bone & Joint Open
Vol. 4, Issue 8 | Pages 551 - 558
1 Aug 2023
Thomas J Shichman I Ohanisian L Stoops TK Lawrence KW Ashkenazi I Watson DT Schwarzkopf R

Aims

United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures.

Methods

A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 56 - 56
1 Dec 2013
Fitzpatrick CK Komitek RD Rullkoetter PJ
Full Access

Introduction:. There is substantial range in kinematics and joint loading in the total knee arthroplasty (TKA) patient population. Prospective TKA designs should be evaluated across the spectrum of loading conditions observed in vivo. Recent research has implanted telemetric tibial trays into TKA patients and measured loads at the tibiofemoral (TF) joint [1]. However, the number of patients for which telemetric data is available is limited and restricts the variability in loading conditions to a small subset of those which may be encountered in vivo. However, there is a substantial amount of fluoroscopic data available from numerous TKA patients and component designs [2]. The purpose of this study was to develop computational simulations which incorporate population-based variability in loading conditions derived from in vivo fluoroscopy, for eventual use in computational as well as experimental activity models. Methods:. Fluoroscopic kinematic data was obtained during squat for several patients with fixed bearing and rotating platform (RP) components. Anterior-posterior (A-P) and internal-external (I-E) motions of the TF joint were extracted from full extension to maximum flexion. Joint compressive loading was estimated using an inverse-dynamics approach. Previously-developed computational models of the knee, lower limb, and Kansas knee simulator were virtually implanted with the same design as the fluoroscopy patients. A control system was integrated with the computational models such that external loading at the hip and ankle were determined in order to reproduce the measured in vivo motions and compressive load (Fig. 1). Accuracy of the model in matching the in vivo motions was assessed, in addition to the resulting joint A-P and I-E loading. The external loading determined for a broader range of patients can subsequently be utilized in a force-controlled simulation to assess the robustness of implant concepts to patient loading variability. The applicability of this work as a comparative tool was illustrated by assessing the kinematics of two PS RP designs under three patient-specific loading conditions. Results:. External hip and ankle loading conditions were determined for each computational model that reproduced in vivo A-P, I-E and flexion-extension joint motions and estimated compressive load. For example, RMS accuracy of 0.4 mm, 0.2° and 0.7° were achieved for A-P, I-E and flexion, respectively (Fig. 1, 2). There was good agreement in both trend and magnitude of joint loads predicted from the externally-loaded models compared to telemetric measurements. Comparative analysis of two designs under multiple loading conditions illustrated variability in joint mechanics as a result of design factors and variation between subjects for the same design (Fig. 3). Discussion:. Pre-clinical evaluation of new devices under physiological joint loading conditions is crucial to robust functionality across the TKA population. The loads applied to a TKA system will affect fixation, wear, and functional performance. Harnessing in vivo kinematic data to develop population-based loading profiles will facilitate development of a platform for comprehensive design-phase evaluation of prospective designs. In addition, loading conditions for experimental simulators can be developed in order to test new devices under the range of variability likely to be encountered in vivo


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 29 - 29
1 Oct 2018
Lawrie CM Schwabe M Pierce A Barrack RL
Full Access

Introduction. Cemented total knee arthroplasty (TKA) remains the gold standard with survivorship above 90% at greater than 10 years postoperatively. However, with younger, heavier, more active patients undergoing TKA at an increasing rate, cementless implants have the appeal of potential for improved implant fixation longevity and decreased rates of aseptic loosening. The cementless implants are more expensive than their cemented counterparts such that implant costs may create a barrier to utilization. However, such comparisons fail to consider the unavoidable additional costs of cementing, including the cost of operating room time, cement and cementing accessories. The purpose of this study is to compare the actual cost of cemented and cementless TKA. Methods. The TKA cost calculation included the cost of operative time, implants, cement and cementing accessories. The difference in operative time between cemented and cementless TKA was determined from a previously published study of 100 TKAs performed using a cemented (55) or press fit (45) implant of the same design performed at a single institution by four fellowship trained arthroplasty surgeons. The decision to use cemented or cementless design in these patients was made based on patient bone quality intraoperatively. Operative time was compared between groups using a Student's two-tailed T-test. The cost of operating room time was based on estimates in the recent literature. The cost of cement and cementing accessories was estimated based on publically available market data. The cost of implants was estimated from institutional data for multiple companies. Results. The cost comparison between cemented and cementless total knee arthroplasty is summarized in Table 1. Mean operative time for cemented TKA was 14.3 minutes longer than for cementless TKA (94.7 + 15.2 vs. 80.4 + 15.7, p<0.01). The estimated cost of one minute of operating room time in the literature ranges from $30 to $60. For our analysis, we used an estimate of $36 per minute obtained from a recently published multi-center study. This resulted in an average operating room time cost $3406 for cemented and $2894 for cementless TKA. Antibiotic cement costs an average of $250 per bag and antibiotic-free cement costs an average of $75 per bag. Cement mixing techniques vary across surgeons. Approximately 95% use a vacuum system and 5% use a mixing bowl. The cost of vacuum systems ranges from $80 for an enclosed bowl to $125 for a vacuum system that can be directly connected to a cement gun. The cost of a plastic mixing bowl and spatula is $20. The cost of the disposables from a cement injection kit is $25. The average cost of a primary TKA implant, including femoral, tibial and polyethylene liner components, is $3530 for cemented and $4659 for cementless designs. Patellar resurfacing is not routinely used at our institution and therefore was not included in implant cost. Based on our calculations, the average cost of a cementless TKA is $7553. Using the cheapest cementing technique with 2 bags of plain cement and a manual mixing bowl with spatula, the cost of a cemented TKA $7114. Using the most expensive cementing technique with 2 bags of antibiotic cement and a cement gun compatible vacuum mixer, the cost of a cemented TKA is $7564. Conclusion. Cemented TKA remains the gold standard and still accounts for most procedures. Cementless TKA is increasing in utilization and may decrease the rate of aseptic loosening, especially in the rapidly growing young, active population undergoing TKA. Although cementless implants remain more expensive than cemented implants at most institutions, the actual overall cost of the two procedures is similar if operative time, cement and cementing accessories are considered. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 21 - 21
1 Apr 2018
Banks S Smith J Leadbitter I Davis N Menke J Harvey A
Full Access

The design of every post-surgical knee arthroplasty study begins with the question “How soon after surgery should we assess the patients?”. The consensus, based primarily upon clinical rating systems, is that patients' scores reach a plateau roughly one year after surgery, and that observations performed at that time should be indicative of the long-term behavior of the joint. This is satisfactory for long-term studies of clinical performance. However, when new devices are introduced there is a need to determine as quickly as possible if the device performs as designed. Waiting a year or more after surgery to characterize a device's performance may place additional patients at risk of receiving an inferior design, or may delay widespread availability of a superior design. The goal of this study was to assess knee arthroplasty patients at 6–12 weeks, 6 months and 1 year after surgery to determine if their tibiofemoral kinematics changed during functional activities. A total of 13 patients (7 female) were recruited from an ongoing clinical study to participate in this IRB-approved sub-study. All subjects received fixed-bearing, cemented, posterior-cruciate-retaining total knee arthroplasty of the same design from a single surgeon. Subjects averaged 69 years, 169cm tall, and 28 BMI. Subjects were studied at 6–12 weeks, at 6 months and at 12 months post-surgery, when they showed an average clinical flexion of 106°, 113° and 115°, respectively. Subjects' knees were observed using pulsed-flat-panel-fluoroscopy during three activities: lunging to maximum flexion with their foot placed on a 20cm step, kneeling to maximum flexion on a padded bench, and step-up/down on a 20cm step without progression of the contralateral limb. Model-image registration was used to register 3D geometric models of the implants with their radiographic projections based upon measured projection parameters. 3D knee kinematics were derived from the registered models, including joint angles and the antero-posterior translation of the medial and lateral condyles relative to the tibial baseplate. There were no statistically significant changes in knee kinematics between the 6–12 week and 6 month, and 6-month and 12-month visits during the kneel and lunge activities (Table 1). Similarly, there were no pair-wise differences in tibial rotation or condylar translation during the dynamic step activity at any flexion angle (Figure 1). Traditional thinking suggests studies of knee mechanics should be performed at least one year after surgery to make observations that are predictive of long-term joint function. In three different functional activities, we could not demonstrate significant changes in knee kinematics between 6–12 weeks and 6 months, nor between 6 months and 12 months. If these results can be confirmed in a larger subject cohort, and for a range of TKA designs, then functional follow-up studies of novel knee arthroplasty designs might be justified as early as 6–12 weeks after surgery, making it possible to accelerate confirmation devices are performing in patients as designed. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 362 - 363
1 Mar 2004
Martin D Ashcroft P Hutchison J Knight D Ledingham W Gibson P
Full Access

Aims: To study prospectively the characteristic migration of four different cemented femoral stems using Radiostereometry. Methods: 96 patients undergoing cemented femoral hip replacement for osteoarthritis were randomised to receive an Exeter (Howmedica Stryker), Ultima Tapered Polished Stem [TPS], Ultima straight stem [USS] (Johnson and Johnson) or Charnley Elite (Depuy/Johnson and Johnson) stem. RSA migration measurements were performed postoperatively and at 6,12,18 and 24 months post surgery using the UMRSA system. Results: Two signiþcantly distinct patterns of distal migration in the y direction (subsidence) were seen, compatible with previous studies. Tapered stems subsided rapidly by six months, Exeter 0.85mm (±0.15) UTPS 0.85mm (±0.15), stabilising by 2 years, Exeter 1.3mm (±0.35), UTPS 1.2mm (±0.25). The USS and Elite designs showed lower migrations of 0.1mm (±0.1) and 0.15 (±0.15) mm at six and 0.25mm (±0.15) and 0.35mm (±0.15) at 24 months. For migrations and rotations in other directions, differences were seen between prostheses with the same design concept. Whilst both the UTPS and Exeter exhibited posterior migration of the head, by 24 months this was expressed as a rotation about the transverse axis for the TPS and the axial axis for the Exeter. The Elite and USS differed in rates of posterior migration and varus tilt. Conclusions: Patterns of migration for stems with the same design concept may vary due to subtle differences in prosthesis shape. These variations produce a distinct migration Ç signature È for each stem


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 71 - 71
1 Jan 2004
Downing MR Ashcroft P Lawrie D Hutchison J Knight D Ledingham W Gibson P
Full Access

Aims: To study prospectively the characteristic migration of four different cemented femoral stems using Radiostereometry. Methods: 96 patients undergoing cemented femoral hip replacement for osteoarthritis were randomised to receive an Exeter (Howmedica Stryker), Ultima Tapered Polished Stem [TPS], Ultima straight stem [USS] (Johnson and Johnson) or Charnley Elite (Depuy/Johnson and Johnson) stem. RSA migration measurements were performed at postoperatively and at 6,12,18 and 24 months post surgery using the UMRSA system enhanced with locally developed software. Results: Two significantly distinct patterns of distal migration in the y direction (subsidence) were seen compatible with previous studies. Tapered stems subsided rapidly by six months Exeter 0.85mm (+/−0.15) UTPS 0.85mm (+/−0.15) stabilising by 2 years Exeter 1.3mm(+/−0.35), UTPS 1.2mm(+/−0.25). The USS and Elite designs showed lower migrations of 0.1mm (+/−0.1) and 0.15 (+/−0.15) mm at six and 0.25mm(+/−0.15) and 0.35mm (+/−0.15) 24 months. For migrations and rotations in other directions differences were seen between prostheses with the same design concept. Whilst both the UTPS and Exeter exhibited posterior migration of the head, by 24 months this was expressed as a rotation about the transverse axis for the TPS and the axial axis for the Exeter. The Elite and USS differed in rates of posterior migration and varus tilt. Conclusions: Patterns of migration for stems with the same design concept may vary due to subtle differences in prosthesis shape. These variations produce a distinct migration “signature” for each stem


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 49 - 49
1 Jul 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar MJ Turgeon T
Full Access

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown patient activity level, and inability to distinguish wear from plastic creep or deformation under load. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. Further work is needed to validate the accuracy of the measurements in vivo


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims

Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems.

Methods

We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 123 - 123
1 Feb 2017
Lewicki K Bell J Van Citters D
Full Access

Introduction. A common phenomenon occurring as a result of reverse total shoulder arthroplasties (RSA) is scapular notching. While bone loss of the scapula may be quantified using radiographic techniques,[1] the material loss on the humeral bearing has not been quantified. Depending on their functional biological activity, a high volume of polyethylene wear particles has been shown to be related to osteolysis, bone loss and ultimately, loosening of implants in other joints.[2] In order to understand the threshold for osteolysis in the shoulder, it is important to have a method that can accurately quantify the amount of material loss. The aim of this research was to (I) create and validate a method for quantifying material loss from a single humeral implant design which can then (II) be used to measure retrieved devices. Methods. Measurement of the surface topography of the implant was completed using coordinate measurement machine (CMM). The resulting point cloud was then imported into MATLAB and run through a custom algorithm to determine the volumetric wear of the humeral liner. Two never implanted humeral liners with an artificially damaged material loss were used for validation purposes. Each component was scanned three times, analyzed using the custom MATLAB program, and compared to gravimetric analysis (Figure 1). Following validation, an IRB-approved database was queried to identify 10 retrieved components of the same design which were then analyzed using the validated method. Results. All average measurements of the never implanted components were within +/- 5 mm. 3. of the gravimetrically determined values, providing a reasonable estimate of the volumetric wear (Figure 1). Ten retrieved components of a single design were analyzed using the same method and material loss ranged from immeasurable (within the accuracy limits) to approximately 90 mm. 3. (Figure 3). One short term duration implant (1.8 mos) exhibited approximately 78 mm. 3. of wear, resulting in a polyethylene dosage of more than 500 mm. 3. /yr. Discussion. The posterior-inferior wear pattern on the rim of these reverse shoulders appears consistent with repetitive scapular impingement. The significant wear of short duration implants indicates that wear associated with scapular notching may progress very quickly, resulting in large dose rates of debris in the joint space. However, the impingement may result in a more abrasive wear mechanism as opposed to an adhesive wear mechanism as seen in other joint wear environments. This may result in different size and shaped polyethylene particles with different biological activity. The algorithms presented in this work can be used to establish a dose-response relationship for scapular notching in RSA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2020
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Background. Total ankle arthroplasty (TAA) is an alternative to ankle arthrodesis, replacing the degenerated joint with a mechanical motion-preserving alternative. Implant loosening remains a primary cause of TAA revision, and has been associated with wear-mediated osteolysis. Differing implant designs have a major influence on the wear performance of joint replacements. Providing a range of implant sizes allows surgeons a greater intra-operative choice for varying patient anatomy and potential to minimise wear. Minimal pre-clinical testing exists in the literature that investigates the effect of implant size on the wear behaviour. The aim of this study therefore was to investigate the effect of two different implant sizes on the wear performance of a TAA. Materials & Methods. Six ‘medium’ and six ‘extra small’ BOX® (MatOrtho Ltd, UK) TAA implants, of the same conceptual design and polyethylene insert thickness, were tested in a modified 6 station pneumatic knee simulator. 5 million cycles (Mc) of wear simulation were completed for each implant size, under kinematics aiming to replicate an ankle gait cycle (Figure 1) [1]. The simulator used had six degrees of freedom, of which four were controlled. The maximum axial load was 3150N, equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranged from −15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component ranged from −2.3° of internal rotation to 8° external rotation, and anterior/posterior (AP) displacement ranged from 3.1 mm anterior to −0.9 mm posterior displacement. The lubricant used was 25% bovine serum supplemented with 0.04% sodium azide to prevent bacterial degradation. The wear of the TAA polyethylene inserts were determined gravimetrically after each Mc, with unloaded soak controls used to compensate for the uptake of moisture by the polyethylene. Results. There were no significant differences (P = 0.872) in the mean wear rates (± 95% confidence limits) between the medium (11.00 ± 3.06 mm3/Mc) and extra small (10.64 ± 4.61 mm3/Mc) implant sizes (Figure 2). An observation of insert surfaces showed clear signs of abrasive wear and burnishing (Figure 3). There was evidence of polyethylene transfer and scratching on the tibial components, while talar components displayed fine linear scratching in similar directions for both implant sizes. Conclusions. The wear rates of both implant sizes are comparable to the wear rate (13.30 ± 2.50 mm3/Mc) of a previous wear study, which was conducted on ‘medium-sized’ Corin Zenith TAAs, under the same simulator conditions for 2 Mc [1]. The wear rates for both implant sizes are substantially lower than the wear of four ‘small-sized’ BOX® ankles (18.60 ± 12.80 mm3/Mc) for 2Mc [2]. The considerable difference in wear rates may be due to the lower forces, higher AP and deionised water as the test lubricant [2], which does not replicate the features of the natural synovial fluid and produce tribological artefact. The results from this study suggest that under the same kinematic and kinetic conditions, the wear rates are unaffected by a change in TAA implant size


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 55 - 55
1 Dec 2016
Lanting B Thoren J Yuan X McCalden R McAuley J MacDonald S Vasarhelyi E Howard J Naudie D Teeter M
Full Access

Adequate fixation of implant components is an important goal for all arthroplasty procedures. Aseptic loosening is one of the leading causes of revision surgery in total knee arthroplasty. Radiostereometric analysis (RSA) is an imaging technique to measure implant migration, with established migration thresholds for well-fixed, at risk, and unacceptably migrating components. The purpose of the present study was to examine the long-term fixation of a cemented titanium fixed bearing polished tibial baseplate. Patients enrolled in a previous two-year prospective trial were recalled at ten years. All patients received a cemented, posterior-stabilised total knee replacement of the same design implanted by one of three surgeons. Of the original 35 patients, 16 were available for long-term follow-up, with one patient lost to follow-up, nine patients deceased, and a further nine patients unwilling to return to the clinic. Each patient underwent RSA imaging in a supine position using a conventional RSA protocol. Migration of the tibial component in all planes as well as maximum total point motion (MTPM) was compared between all time points (baseline, six weeks, three months, six months, one year, two years) up to the ten year follow-up visits. Outcome scores including the Knee Society Score (KSS), WOMAC, SF-12, and UCLA Activity Score were recorded. At ten years, the mean migrations of the tibial component were less than 0.1 mm and 0.1 degree in all planes relative to the post-operative RSA exam. There was no significant difference in tibial component migration between time points. However, MTPM increased significantly over time (p = 0.002), from 0.23 ± 0.18 mm at six weeks to 0.42 ± 0.20 mm at ten years. At one year, 13 patients had an acceptable MTPM level, three patients had an ‘at risk’ level, and no patient had an ‘unacceptable’ level. No patients were revised at ten years. WOMAC and KSS were significantly improved (p < 0.0001) at the latest follow-up compared to pre-operatively, but there was no difference in SF-12. The median UCLA Activity Score at latest follow-up was six (range, two to eight). The tibial baseplate demonstrated solid fixation at ten years. No patients had an unacceptable MTPM level at one year and no patients were revised at ten years, supporting the use of RSA to predict long-term loosening risk. The low level of tibial baseplate migration found in the present study correlates to the low rate of revision for this implant as reported in individual studies and in joint replacement registries


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 83 - 83
1 Dec 2016
Burnell C Flynn B Gascoyne T Stockwell K Turgeon T
Full Access

Non-large head Metal-on-metal (MoM) hip replacements were seen as a solution to concerns about implant wear in younger patients. Mid-term loosening of once well-fixed hydroxyapatite (HA) coated femoral stems was recently observed in select MoM patients upon revision surgery. Accordingly, an implant retrieval study was undertaken to examine the incidence of aseptic loosening of in HA-coated femoral stems with MoM, ceramic on ceramic (CoC) and metal on polyethylene (MoP) bearing couples. A single-centre implant retrieval lab reviewed 44 hydroxyapatite (HA)-coated titanium wedge taper stems of the same design retrieved over a period of 9 years. Ten were MoM articulations, 23 MoP and 11 CoC. Head sizes ranged from 28 to 40 with only four 40mm heads, all of which were MoM. Reason for revision, duration of implantation, femoral head size, patient age and body mass index was recorded for each retrieval. Goldberg corrosion scores were determined for the taper surfaces of each retrieval, with ‘0’ indicating no corrosion and ‘3’ indicating severe corrosion. Logistic regression analysis, Wilcoxan Rank Sum and Fischer's exact test were used for statistical analysis. Aseptic loosening was the listed reason for revision in 18 of 44 cases. MoM bearing was associated with increased probability of aseptic loosening (Odds ratio 7.1 (95%CI 1.1–47.0) p=0.042). Severity of corrosion was also associated with aseptic loosening (Odds ratio 2.75 (95%CI 1.1–6.6) p=0.02). Head size and patient age had no correlation. Median time to revision of implants for aseptic loosening was 4.5 years (range: 4.2–7.0 years) for MoM versus 1.4 years (range: 0.3–3.0) for other bearing couples (p=0.004). Aseptic loosening was categorised as early (<=2 years) or mid-term (>2 years). No MoM hips were revised for aseptic loosening in the first 2 years while 8 of the 11 mid-term revisions had MoM articulations (p=0.004). Taper corrosion was more severe in mid-term aseptic loosing cases (p=0.049). MoM HA-coated hip replacements appear to be associated with increased mid-term aseptic loosening compared to other bearing couples. Patients with MoM HA-coated hip replacements should be monitored regularly beyond the initial 1 to 2 years following surgery. Future analyses will examine the presence and progression of femoral radiolucency prior to revision surgery to determine an approximate timeline of stem loosening in this patient cohort. This research highlights the importance of implant retrieval programs to assess post-revision implant characteristics for early identification of possible device issues


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 73 - 73
1 Feb 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T
Full Access

Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Results. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 0–4% of calculated wear rates being negative compared to 29–39% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years; supine, 16.3 mm. 3. /yr (SD: 27.8) and 11.2 mm. 3. /yr (SD: 18.5) versus standing, 51.3 mm. 3. /yr (SD: 55.9) and 32.7 mm. 3. /yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm. 3. /yr) and 71% of patients at 2 years (Avg: 48.9 mm. 3. /yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Discussion and Conclusion. This study demonstrated TKA wear to occur at a rate of approximately 10 mm. 3. /year and 39 mm. 3. /year in patients imaged supine versus standing, respectively, averaged over 2 years of clinical follow-up. In an effort to eliminate the effect of PE creep and deformation, wear was also calculated between 12 and 24 months as 9.3 mm. 3. (standing examinations), This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, and unknown patient activity level. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. For any figures or tables, please contact authors directly