Aims. The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current
Advances in orthopaedic surgery have led to minimally invasive techniques to decrease patient morbidity by minimizing surgical exposure, but also limits direct visualization. This has led to the increased use of intraoperative fluoroscopy for fracture management. Unfortunately, these procedures require the operating surgeon to stay in close proximity to the patient, thus being exposed to radiation scatter. The current National Council on
Introduction: The increasing popularity of minimal access surgery in orthopaedic surgery has resulted in increasing use of intra-operative fluoroscopy. The radiation dose received by the surgeon varies from procedure to procedure depending on several factors such as duration of procedure, direct exposure to radiation beam and distance from the radiation source. In particular hand and wrist injuries often involve direct fluoroscopic exposure to the hands of the surgeon and assistant during the procedure. Aim: We undertook a prospective study to directly evaluate the exposure of the surgeon’s and assistant’s hands and thyroid glands during K-wiring procedures of the hand and wrist. In addition we evaluated the efficacy of a lead thyroid shield in limiting the radiation dose to the thyroid gland. In addition we undertook a questionnaire of orthopaedic surgeons and trainees in Ireland to assess the availability of thyroid shields and current practice in wearing them. Method A total of 30 cases were evaluated. Dosimeter film badges (TLD) were obtained from the Radiological Protection Institute of Ireland (RPI). Two dosimeters were worn by each of the surgical team: one on the dorsum of the dominant hand and a second worn on the neck during the procedure. The number of fluoroscopic exposures, number of times that hands were caught in the image field, the total dosage of radiation for the procedure and the length of time of exposure were recorded. In 20 cases the surgical team undertook standard precautions of a lead jacket. In a random selection of 10 cases the surgical team also wore a thyroid shield. Results. The mean dose to the surgical teams’ hands was 1.8 cGy (95% CI + 0.6). The mean dose to the thyroid gland was 0.6 cGy in unprotected cases. Notably the dose to the assistants’ hands was higher though this did not reach statistical approval. In cases in which a thyroid shield was worn a significant decrease in dose was noted (p<
0.05). 35% of surgeons had completed a
It was noted that in our spinal theatre a constant cause of delay was lack of an available radiographer. This work describes our solution to this problem by training theatre staff to operate the imaging equipment for the simple single plane images required in spinal surgery. Under the guidance of the trust's
The International Commission on Radiological Protection has established standards for
Background: There is increased concern regarding radiation exposure to surgeons using fluoroscopic guidance throughout various procedures. However, relatively little information exists on the level of radiation exposure to the foot and ankle surgeon during fluoroscopically assisted foot and ankle surgery. Methods: We are conducting an ongoing proespective study to measure radiation exposure to the hands of a single orthopaedic foot and ankle surgeon (RD). Over a 12-month period, thermoluminescent dosimeter rings are worn on the little finger of each hand of the operating surgeon. The rings are changed at six week intervals. Measurement of the overall radiation exposure is being recorded over this time period. Results: This is an ongoing prospective study started in December 2004. We are measuring: total number foot and ankle cases using fluoroscopy, the total screening time for foot and ankle procedures, the mean screening time per procedure and the total radiation exposure to the thermoluminescent dosimetry rings. Conclusion: Preliminary results show that radiation exposure is well below the current annual dose limit. In our study, radiation exposure during orthopaedic foot and ankle procedures is expected to comply with current recommendations of the European Committee on
The availability and usage of portable image intensifiers has revolutionised routine orthopaedic practice. Many procedures have become simpler, easier, less invasive and less time-consuming. Extensive use of fluoroscopy can, however, result in significant radiation exposure to operating staff. An accumulated dose of 65 (Sv after multiple exposures has been reported to increase the risk of thyroid cancer many years later. Previous studies have shown that it is possible to exceed this dose during various orthopaedic procedures. Though thyroid shields are extensively available most orthopaedic surgeons do not use them. The present study was aimed at measuring the scattered dose to thyroid during DHS/IMHS for neck of femur fractures and IM nailing for long bone fractures and thereby emphasise the need for operating theatre personnel to wear a thyroid shield. A prospective study of 32 consecutive procedures was carried out. The EDD Unfors dosimeter was used to measure the tissue specific exposure dose to thyroid. Measurements were also obtained from the mobile C-arm fluoroscope unit, which calculated the total number of images and the total dose and duration of radiation for each procedure. Other factors including the grade of surgeon, the total number of theatre personnel wearing the lead gown and/or the thyroid shield and the duration of surgery were also recorded. In 32 procedures, the dose of 65 (Sv was exceeded 13 times; 8 times during DHS/IMHS and 5 times during IMN. The average thyroid dose was 142 (Sv during IMN and 55 (Sv during DHS. Only 9 of 223 (4%) theatre personnel were using a thyroid shield in spite of its availability. The results suggest that the thyroid is frequently exposed to potentially harmful radiation during these procedures. Strict inclusion of a thyroid shield as a part of routine
Orthopaedics has been left behind in the worldwide drive towards diversity and inclusion. In the UK, only 7% of orthopaedic consultants are female. There is growing evidence that diversity increases innovation as well as patient outcomes. This paper has reviewed the literature to identify some of the common issues affecting female surgeons in orthopaedics, and ways in which we can address them: there is a wealth of evidence documenting the differences in the journey of men and women towards a consultant role. We also look at lessons learned from research in the business sector and the military. The ‘Hidden Curriculum’ is out of date and needs to enter the 21st century: microaggressions in the workplace must be challenged; we need to consider more flexible training options and support trainees who wish to become pregnant; mentors, both male and female, are imperative to provide support for trainees. The world has changed, and we need to consider how we can improve diversity to stay relevant and effective. Cite this article:
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods