Advertisement for orthosearch.org.uk
Results 1 - 20 of 177
Results per page:
Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 59 - 59
1 Mar 2010
Caterson* B Hayes A Tudor D Nowell M Hughes C
Full Access

In the mid-1980s we produced and characterised several monoclonal antibodies ‘mAbs 3-B-3(−); 4-C-3, 6-C-3 & 7-D-4) that recognised unique native sulphation motifs in chondroitin sulphate (CS) glycosaminoglycan (GAG) chains on connective tissue proteoglycans (PGs). These antibodies were shown to specifically locate CS-PGs in the pericellular regions surrounding putative sites where haemopoietic stem cells were undergoing lymphopoiesis in the Bursa of Fabricius of embryonic chicks. In later studies, we also observed immunostaining for some of these mAbs ‘3-B-3(-) & 7-D-4’ in chondrocyte clusters present in tissue sections from late-stage osteoarthritic cartilage from canine and human patients. In a recent study ‘Hayes et al (2008), J. Histochem Cytochem. 56: 125–128’ we have used these anti-CS sulphation motif mAbs to specifically identify stem/chondroprogenitor cells in the surface/superficial zone of hyaline articular cartilage. Furthermore, we used these mAbs in FACS analyses to sort and isolate chondroprogenitor cells for potential pluripotent cell enrichment in tissue engineering/tissue regeneration technologies. We have also used several of these mAbs to identify stem/progenitor cells in different anatomical and functional regions of the tendon; i.e. where the tendon wraps around bone in compressed regions where the cells exhibit a more chondrogenic phenotype and also in the outer zones of the tendon surrounding pericytes where vascularisation occurs. In the developing intervertebral some of these mAbs specifically recognise stem/progenitor cells at the interzone between the outer and inner anulus an also the boundary of the nucleus with the inner annulus, these results indicating their use for stem/progenitor cell identification and isolation in other musculoskeletal tissues. Interestingly, these mAbs also immunostained the pericellular environment (stem cell niche) in the crypts of the gut and the limbus of the eye where stem cells reside. Collectively, this data strongly suggests that these mAbs recognising CS sulphation motifs can be used as biomarkers to identify stem cell niches in numerous tissues of the body and that they can be used for stem/progenitor cell isolation for use in tissue engineering/regeneration procedures. This work was supported by BBSRC and ARC funding


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 4 - 4
1 Nov 2016
Affan A Aljezani N Railton P Powell J Krawetz R
Full Access

There is currently no cure for osteoarthritis (OA), although there are ways to manage it, but most require quite invasive surgeries. There is a resident mesenchymal progenitor cell (MPC) population within the synovial membrane of the joint that have the ability to differentiate into bone, fat, and cartilage. We hypothesise that in vivo and in vitro cell surface marker expression comparisons of the MPCs can determine which population has the highest chondrogenic capacity and is best suited for future clinical trials. Method optimisation protocol: Synovial biopsies (2 or 5mm) were obtained from patients undergoing surgery. The biopsies were digested in either collagenase type I, IA, IV or II at a concentration of 0.5 or 1.0 mg/mL. Digestion was conducted at 37°C for 30, 60, 90 or 120min. To assay for the number of MPCs obtained, the cell suspension was stained with CD90 (a synovial MPC marker) and magnetically purified. The purified cells were then assayed by flow cytometry (Co-stained with a live/dead cell marker, BV510) or bright-field microscopy. Study protocol: Synovial tissues were digested in type IV collagenase for two hours to obtain a single cell suspension. The cells were subsequently stained with mesenchymal stem cell markers, including CD 90, CD 271, CD 44, CD73, and CD105, a macrophage marker, CD68. The macrophages were excluded and the remaining cells were index sorted into 96-well plates. The cells were expanded, and underwent 21-day chondrogenic, adipogenic, and osteogenic differentiation. Differentiation was assayed using RT-qPCR and histological methods. Additionally, the cells were re-analysed for marker expression after culturing. Optimisation: Synovial biopsies of 5mm produced a greater number of live CD90+ cells than 2mm biopsies. It was observed that type IV collagenase at 1mg/ML treatment for 120 min (hip) and 90 min (knee) obtained the greatest number of CD90+ MPCs from the synovium. Results: A single cell was isolated from an OA hip biopsy and was positive for the markers CD90, CD44, CD73, and negative for the markers CD68, CD271, CD105. Following differentiation, PCR analysis suggested that the cell line was able to differentiate into chondrocytes and adipocytes, but not osteoblasts. Histology data agreed with the PCR data with the adipocytes and chondrocytes having positive staining, whereas the osteoblasts were negative. FACS analysis following proliferation showed that the expression in vivo versus in vitro was the same except CD105 that became positive after proliferation in vitro. MPCs express cell surface markers that provide information as to populations have the best cartilage regeneration abilities. By determining the properties of the MPCs in OA hips that allow for better chondrogenic differentiation abilities in vitro, selecting the optimal cells for regenerating cartilage can be done more efficiently for novel cell therapies for OA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 17 - 17
1 Apr 2013
Giles E Nauth A Lin T Glick M Schemitsch E
Full Access

Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating bone regeneration. Hypothesis. The current study compared early and late outgrowth endothelial progenitor cell subtypes (EPCs vs OECs) for fracture healing potential in vitro and in vivo. Methods. Primary cell cultures were isolated and characterized by endothelial assays, immunosorbent assays, and multi-color flow cytometry. Co-cultures of EPC subtypes with/without primary osteoblasts (pObs) were analyzed for tube length and connectivity. In vivo, EPCs or OECs (1×10. 6. ) seeded on a gelfoam scaffold were implanted in a rat model of nonunion. Radiography was used to monitor callus formation. Results. OECs expressed more BMP-2 and less VEGF than EPCs (p<0.05). Analysis of surface markers showed decreased CD34+/CD133+/Flk-1+, CD133+ and CD45+ populations in OECs while CD34+/CD31+/Flk-1+ cells increased. pObs significantly inhibited the strong tubulogenesis of OECs while enhancing connectivity and sprout length of EPCs. In vivo, 0/6 scaffold-control and 1/5 OEC rats achieved union at 10 weeks. In comparison, all EPC rats achieved full or partial union. Discussion and Conclusion. Despite favorable tubulogenic and osteoconductive profiles of OECs, EPCs display enhanced fracture healing in vivo. Differences in CXCR4 expression and cell-mediated effects may contribute to this result


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 126 - 126
4 Apr 2023
Koblenzer M Weiler M Pufe T Jahr H
Full Access

Many age-related diseases affect our skeletal system, but bone health-targeting drug development strategies still largely rely on 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings.

MC3T3-E1 pre-osteoblast spheroids were cultured in V-shaped plates for 28 days in alpha-MEM (10% FCS, 1% L-Gln, 1X NEAA) with 1% pen/strep, changed every two days, and differentiation was induced by 10mM b-glycerophosphate and 50µg/ml ascorbic-acid. Osteogenic cell differentiation was assessed through profiling mRNA expression of selected osteogenic markers by efficiency corrected normalized 2^DDCq RT-qPCR. Biomineralization in spheroids was evaluated by histochemistry (Alizarin Red/von Kossa staining), Alkaline phosphatase (Alp) activity, Fourier transform infrared spectroscopy (FTIR) analyses, micro-CT analyses, and scanning electron microscopy on critical point-dried samples. GraphPad Prism 9 analyses comprised Shapiro-Wilk and Brown-Forsythe tests as well as 2-way ANOVA with Tukey post-hoc and non-parametric Kruskal-Wallis with Dunn post-hoc tests.

During mineralization, as opposed to non-mineralizing conditions, characteristic mRNA expression profiles of selected early and late osteoblast differentiation markers (e.g., RunX, Alp, Col1a1, Bglap) were observed between day 0 and 28 of culture; Alp was strongly upregulated (p<0.001) from day 7 on, followed by its enzymatic activity (p<0.001). Bglap and Col1a1 expression peaked on (p<0.001) and from day 14 on (p<0.05), respectively. IHC revealed osteocalcin staining in the spheroid core regions at day 14, while type I collagen staining of the cores was most prominent from day 21 on. Alizarin Red and Von Kossa confirmed central and radially outwards expanding mineralization patterns between day 14 and day 28, which was accompanied by a steady increase in extracellular calcium deposition over time (p<0.001). Micro-CT analyses allowed quantitative appreciation of the overall increase in mineral density over time (day21, p<0.05; d28, p<0.001), while SEM-EDX and FTIR ultimately confirmed a bone-like hydroxyapatite mineral deposition in 3D.

A novel and thoroughly characterized versatile bone-like 3D biomineralization in vitro model was established, which allows for studying effects of pharmacological interventions on bone mineralization ex vivo under physiomimetic conditions. Ongoing studies currently aim at elucidating in how far it specifically recapitulates intramembranous ossification.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 38 - 38
1 Nov 2018
Yin H Popov C Schieker M Nerlich M Docheva D
Full Access

Background: The exact pathways of collagen remodeling in tendon tissue are not well understood. Therefore, we have established a 3D collagen gel system and studied the remodeling capacity of two different TSPC lines: young, Y-TSPC and aged/degenerative, A-TSPC. We specifically investigated the involvement of integrin receptors in the remodeling process. Methods: Y- and A-TSPC were derived from human Achilles tendon. RT-PCR was used to assess the expression of collagen-binding integrins. Integrins a1 and a11 were silenced by lentiviral delivery of shRNA in the Y-TSPC. Control-shRNA, a1-shRNA and a11-shRNA virus was given for 24h and then cells were selected with zeocin for 10 days. The integrin knockdown (KD) efficiency was assessed by quantitative PCR and western blotting. Last, time-lapse recording of gel contraction of Y-TSPC+con, Y-TSPC+a1KD, Y-TSPC+a11KD, and A-TSPC were performed. Results: Integrin a1 and a11 were significantly downregulated in A-TSPC. Therefore, to mimic the A-TSPC we carried out a1 and a11 KD in Y-TSPC. PCR and western blot validated very efficient KD. Analyses of collagen contraction revealed that Y-TSPC+a11KD had significant reduction in collagen contractibility comparable to A-TSPC phenotype. Regarding integrin a1, we found that this receptor had no effect on the contraction rate of TSPC. Thus, to our knowledge we have now identified for the first time a novel role of a11 integrin in tendon matrix remodeling, and a follow up analyses of the exact downstream cascade are on the way.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims. In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods. Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results. Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion. This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 31 - 31
2 Jan 2024
Negri S Yea J Gomez-Salazar M Onggo S Li Z Thottappillil N Cherief M Xing X Qin Q Tower R Fan C Levi B James A
Full Access

Heterotopic ossification (HO) is defined as aberrant bone formation in extraskeletal locations. In this process, local stromal cells of mesenchymal origin abnormally differentiate, resulting in pathologic cartilage and bone matrix deposition. However, the specific cell type and mechanisms beyond this process are not well understood, in part due to the heterogeneity of progenitor cells involved. Here, a combination of single cell RNA sequencing (scRNA-Seq) and lineage tracing, defined the extent to which synovial / tendon sheath progenitor cells contribute to HO. For this purpose, a Tppp3 (tubulin polymerization-promoting protein family member 3) inducible reporter model was used, in combination with either Scx (Scleraxis) or Pdgfra (Platelet derived growth factor receptor alpha) reporter animals. Both arthroplasty-induced and tendon injury-mouse experimental HO models were utilized. ScRNA-Seq of tendon-induced traumatic HO suggested that Tppp3 is a progenitor cell marker for either osteochondral or tendon or cells. After HO induction, Tppp3 reporter+ cell population expanded in number and contributed to cartilage and bone formation in tendon and joint-associated HO. Using double reporter animals, we found that both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells produced HO-associated cartilage. Finally, the examination of human samples showed a significant population of TPPP3+ cells overlapping with osteogenic markers in areas of HO. Overall, these results provide novel observations that peritenon and synovial progenitor cells undergo abnormal osteochondral differentiation and contribute to heterotopic bone formation after trauma


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 49 - 49
2 Jan 2024
Gantenbein B
Full Access

Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration. Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors. Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and tissue engineering


Bone & Joint Research
Vol. 11, Issue 11 | Pages 763 - 776
1 Nov 2022
Zhang Y Jiang B Zhang P Chiu SK Lee MH

Aims. Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders. Methods. We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1. PrαTACE. ’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation. Results. Osteoclast progenitor cells transduced with T1. PrαTACE. failed to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts or exhibit bone-resorbing activity following treatment with RANKL. At the messenger RNA level, T1. PrαTACE. strongly attenuated expression of key osteoclast marker genes that included TRAP, cathepsin K, osteoclast stimulatory transmembrane protein (OC-STAMP), dendritic cell-specific transmembrane protein (DC-STAMP), osteoclast-associated receptor (OSCAR), and ATPase H. +. -transporting V0 subunit d2 (ATP6V0D2) by blocking autoamplification of nuclear factor of activated T cells 1 (NFATc1), the osteoclastogenic transcription factor. T1. PrαTACE. selectively extended p44/42 mitogen-activated protein kinase activation, an action that may have interrupted terminal differentiation of osteoclasts. Inhibition studies with broad-spectrum hydroxamate inhibitors confirmed that the anti-resorptive activity of T1. PrαTACE. was not reliant on its metalloproteinase-inhibitory activity. Conclusion. T1. PrαTACE. disrupts the RANKL-NFATc1 signalling pathway, which leads to osteoclast dysfunction. As a novel candidate in the prevention of osteoclastogenesis, the TIMP could potentially be developed for the treatment of osteoclast-related disorders such as osteoporosis. Cite this article: Bone Joint Res 2022;11(11):763–776


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives. Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Methods. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs). Results. The supernatant contained several GFs/CKs, with especially high levels of basic fibroblast growth factor, and CD34+ cells as the stem/progenitor cell fraction. With regard to biological potential, we confirmed that cell proliferation, osteoinduction, and angiogenesis in hMSCs and HUVECs were enhanced by the supernatant. Conclusions. The current study demonstrates the potential of a new point-of-care strategy for regenerative medicine using skeletal muscle supernatant. This attractive approach and readily-available material could be a promising option for tissue repair/regeneration in the clinical setting. Cite this article: M. Yoshikawa, T. Nakasa, M. Ishikawa, N. Adachi, M. Ochi. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res 2017;6:277–283. DOI: 10.1302/2046-3758.65.BJR-2016-0187.R1


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 97 - 97
1 Aug 2012
Chandrashekran A Kelly J Williams R Archer C Goodship A
Full Access

Unique progenitor cells have been identified recently and successfully cultured in vitro from human articular cartilage. These cells are able to maintain chondrogenic potential upon extensive expansion. In this study, we have developed a sheep, ex-vivo model of cartilage damage and repair, using these progenitor cells. This study addresses the question can such a model be used to determine factors required for progenitor cell proliferation, differentiation and integration of matrix onto bone. The hypothesis was that sheep allogenic cartilage derived progenitor cells could regenerate artificially damaged sheep articular cartilage in an osteochondral culture model. Progenitor cells were derived from ovine articular cartilage using a differential adhesion assay to fibronectin and expanded clonally. These clonal cells were marked with lentiviral vectors derived from the Human Immunodeficiency Virus-1. When a self-inactivating lentiviral vector encoding a ubiquitous phosphoglycerate kinase promoter, driving a Green Fluorescent Protein (GFP) reporter gene, was used to transduce these cells, up to 80% of these progenitor cells expressed GFP. Normal sheep medial femoral condyles containing about 2mm thick sub-condral bone were obtained and 4mm circular defects created on the cartilage surface using a biopsy punch. Condyles were cultured for two weeks in vitro with GFP labelled progenitor cells within a fibrin glue scaffold (Tisseel Lyo) and matrix production (collagen) as determined by spatially offset Raman spectroscopy and immunohistochemistry was demonstrated. Progenitor cells were able to proliferate and differentiate into collagen producing cells. Such an ex-vivo model system is an effective tool for the analysis of cartilage repair from various sources of stem cells. These ex-vivo experiments and variations on defect type, size, titration of scaffold and progenitor cell numbers requirements can further be used as a basis for screening prior to in vivo experiments


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 42 - 42
1 Oct 2019
Grad S Wangler S Peroglio M Menzel U Benneker L Haglund L Sakai D Alini M
Full Access

Background and Purpose. Intervertebral disc (IVD) degeneration is a prominent cause of low back pain. IVD cells expressing angiopoietin-1 receptor Tie2 represent a progenitor cell population which decreases with progression of IVD degeneration. Homing of mesenchymal stem cells (MSCs) is a physiological mechanism aiming to enhance the regenerative capacity of the IVD. The purpose of this study was to assess the effect of MSC homing on the Tie2 positive IVD progenitor cell population, the IVD cell viability, and the proliferative phenotype of the IVD cells. Methods and Results. Human MSCs were isolated from bone marrow aspirates and labelled with fluorescent dye. Whole IVDs with endplates were harvested from bovine tails; MSCs were placed on the endplates. Human traumatic, degenerative and healthy IVD tissues were obtained from patients and organ donors. MSCs were added onto tissue samples. After 5 days, IVD cells were isolated. Percentages of Tie2 positive, DAPI positive (dead) and Ki-67 positive (proliferative) IVD cells were determined. MSC homing or co-culture significantly increased the proportion of Tie2 positive progenitor IVD cells in bovine and 7/10 human IVDs, decreased the fraction of dead IVD cells in bovine and 7/10 human IVDs, and induced a proliferative phenotype in bovine and 5/6 human IVDs. Conclusion. Stimulation of bovine and human IVDs by MSC homing resulted in an enhanced population of Tie2 positive IVD progenitor cells, induced a proliferative response and reduced IVD cell death. Hence, the interaction with recruited MSCs may contribute to an improved survival of IVD cells, helping to reverse or slow down an ongoing degenerative process. Conflicts of interest: The authors declare no conflicts of interest. Sources of funding: AO Foundation and AOSpine International


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 49 - 49
1 Aug 2020
Sheyn D Papalamprou A Chahla J Chan V Limpisvasti O Mandelboum B Metzger M
Full Access

The meniscus is at the cornerstone of knee joint function, imparting stability and ensuring shock absorption, load transmission, and stress distribution within the knee joint. However, it is very vulnerable to injury and age-related degeneration. Meniscal tears are reported as the most common pathology of the knee with a mean annual incidence of 66 per 100,000. Knee osteoarthritis progresses more rapidly in the absence of a functional meniscus. Historically, tears extending to the avascular inner portion of the meniscus (white-white zone, “WW”), such as radial tears were considered as untreatable and were often resected, due to the lack of vascularity in the WW zone. Perfusion-based anatomical studies performed on cadaveric menisci in the 1980s shaped the current dogma that human meniscus has poor regenerative capacity, partly due to limited blood supply that only reaches 10 to 25% of the meniscus, commonly referred to as red-red zone (“RR”). Previous studies, including those utilizing animal models have shown mobilization of Mesenchymal Stem Cells (MSCs) upon injury into the WW zone, and successful MSC recruitment when administered externally to the injury site. We and others have recently reported positive outcomes of repaired tears in the inner zone of patients. We hypothesized that the “avascular” white-white zone of the meniscus possesses regenerative capacity due to a resident stem/progenitor cell population. Further, we sought to redefine the presence of microvessels in all meniscal zones using advanced stereology and imaging modalities. Fifteen menisci from fresh human cadaveric knees (mean age: 21.53±6.53 years) without evidence of previous injury were obtained from two tissue banks (JRF, Centennial, CO) and Biosource Medical (Lakeland, FL) and utilized for this study. The use of cadaveric specimens for research purposes was approved by the institutional review board. Tibial plateaus were dissected to harvest medial and lateral menisci along their entire length. The RR, red-white (RW) and WW zones were dissected and separated into three thirds from the inner aspect to the marginal border of the meniscus and their wet weights recorded (Fig.1A). Meniscus tissue cellular content in each zone was obtained from dissociation of meniscus tissue using 0.02% w/v pronase (Millipore) for 1h at 37oC, followed by 18h 0.02% w/v collagenase II (Worthington) at 37oC with shaking. Isolated cells were characterized immediately after harvest using flow cytometry with antibodies against MSCs surface markers (CD105, CD90, CD44 and CD29) as well as respective isotype controls. Further, meniscal cells were cultured and split twice when confluence was reached, characterized at P2 and compared to bone marrow-derived MSCs (BM-MSCs) using the same markers. Self-renewal of cells was assessed using colony forming unit (CFU) assay. Differentiation assays were performed to assess whether colony-forming cells retained multilineage potential. For morphological examination of bigger vessels, samples were fixed in 10% formalin for 1 week, paraffin embedded, sectioned (4 μm thick) and stained with H&E and Masson's trichrome. Presence of microvessels was assessed by CD31 immunofluorescence staining. Further, menisci were cleared using the uDisco protocol labeled with the TO-PRO®-3 stain, a fluorescent dye that stains cell nuclei and imaged using light-sheet microscopy. All continuous data are presented as mean ±standard deviation. Non-repeated measures analysis of variance (ANOVA) and Tukey-Kramer HSD post hoc analysis were performed on sample means for continuous variables. Statistical significance was set at p < 0 .05. Menisci were successfully cleared using a modified uDISCO procedure, imaged and analyzed for total cell density. As expected, bigger vessels were observed in RR but not in WW. However, immunofluorescent staining for CD31 showed a subset of CD31+endothelial cells present in the WW zone, indicating the presence of small vessels, most likely capillaries. In order to assess whether enzymatic digestion had a differential result depending on meniscus zone due to cellular content, we analyzed yields per meniscus per zone. The wet weight of different zones (WW:RW:RR) was at a ratio of ∼1:3:5 respectively, however, the ratio of cells isolated from each zone was at ∼1:4:20, indicating that RR has a denser population of mononuclear cells. However, the difference between all zones in cell yields was not significant. The clonogenic potential of isolated cells was shown to be non-significantly different between the three zones. Differentiation of isolated cells to osteogenic lineage using osteogenic media in vitroshowed no difference between the three zones. Flow cytometry analysis of cells from the three meniscal zones displayed presence of two distinct subpopulations of cells immediately after isolation. One subpopulation was positive to MSC surface markers and the other negative. Additionally, flow cytometry of cultured meniscal cells at P2 displayed that the entire cell population was CD44+CD105+CD29+CD90+, suggesting that culturing meniscal cells results in selection of stem/progenitor cells (plastic adherence). Surface marker expression analysis showed differential expression patterns between markers depending on zone. Similar fraction of cells was detected to express both MSC markers CD90 and CD105 (7–10%) and similar fraction of cells expressed both MSC markers CD29 and CD44 (1–2%) in all three zones, indicating similar density of resident stem/progenitor cells in each zone. Importantly, WW showed significantly higher expression for all four MSC markers compared to the RR zone, indicating higher relative density of stem/progenitor resident cells in the WW zone. Our results determine that CD31-expressing microvessels were present in all zones, including the WW zone, which was previously considered completely avascular. Additionally, stem/progenitor cells were shown to be present in all three zones of the menisci, including the WW zone, showcasing its regenerative potential. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 33 - 33
1 Dec 2022
Vadalà G Cicione C Tilotta V Di Giacomo G Ambrosio L Russo F Papalia R Denaro V
Full Access

Low back pain (LBP) is the leading cause of disability worldwide. Recently, treatment of the intervertebral disc (IVD) with stem cells has been used for the treatment of degenerate discs (IDD) which cause at least the 40% of LBP cases. Despite pain reduction, follow-up in clinical studies have not shown an improvement in the structural integrity of IVD. A valid alternative could be the use of progenitor disc cells (notocordal cells, NC) or of their precursors. Mesendoderm progenitor cells (MEPC) have the ability to replicate and differentiate toward NC. In this preliminary study we evaluated in a preclinical large animal IDD model the viability and NC differentiation of MEPC derived from induced pluripotent stem cells (iPSC). MEPC, derived from iPSC and developed during the iPSpine project (# 825925), were thawed and plated on laminin for 24h and labeled with PKH26. Two adult sheep were subjected to nucleotomy of five lumbar discs for the induction of IDD. After 5 weeks, 3 of the 5 degenerate discs were treated with MEPC at 3 different doses (low, medium and high). One sheep was sacrificed after 7 days and the other after 30 days from the treatment injection procedure. Clinical parameters were collected to evaluate the safety of treatment. Discs were paraffin embedded and analysed using histological techniques. Survival (PKH26), proliferation (PCNA), notocordal cell differentiation (Brachyury, Cytokeratin 8/18/19, Sox9, Foxa2) and endodermal differentiation (Sox17) were evaluated. After the injection of the cells, both sheep lost about 20% of body weight. The analysis showed that only in discs treated with the highest dose the PKH26 stained cells resulted alive after 30 days from the procedure. These cells turn out to be:. -. in proliferation (PCNA). -. positive for Brachyury, cytokeratin 8/18/19 and Foxa2. -. a small percentage positive for SOX17. This preliminary study shows that MEPC, derived from iPSC and injected into ovine discs degenerated by nucleotomy, are able to survive 30 days from treatment and differentiate within the disc predominantly towards the notocordal phenotype


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 188 - 188
1 Jul 2014
Zulqadar S McBride S Knothe U Tate MK
Full Access

Summary Statement. The purpose of this experimental imaging study is to determine the Poisson's ratio of ovine periosteum, using strain mapping data from an imaging study designed to elucidate the mechanical environment of periosteal progenitor cells in situ during stance shift loading. Introduction. Periosteum is a composite, so-called “smart” or stimuli responsive material that provides a niche for pluripotent cells that exhibit mechanosensitivity in their proliferative and differentiation behavior. The overarching aim of this research program is to explore, understand, and exploit the mechanical signals that promote cell lineage commitment and de novo bone generation during embryonic development and postnatal healing. Further, our working hypothesis is that periosteum derived progenitor cells are highly sensitive to their local mechanical milieu, which guides their proliferation, motility and differentiation behavior. As a first step toward understand the role of periosteum anisotropy on defining the local mechanical milieu of a given progenitor cell, the objective of the current study is to determine the Poisson's ratio of ovine periosteum and its sensitivity to near, mid- and long-range strains. Methods. The Poisson's ratio for the ovine periosteum was determined using strain mapping data from an high resolution imaging study designed to elucidate the mechanical environment of periosteal progenitor cells in situ. The Poisson's ratio of long bone periosteum is given by the relative ratio of strain in the transverse direction to strain in the axial or longitudinal direction. Given high resolution video imaging data, digital image correlation is used to calculate the average strain and Poisson's ratio between three closest neighbors (nearest neighbor), between 25 points in a 50–150 pixel distance (short range, SR), and between 25 points in a 200–400 pixel distance (long range, LR) of the periosteum during an ex vivo loading setup designed to mimic stance shift loading. Results. Short and long range strains vary with spatial location and time during a given gait cycle. Calculations based on nearest neighbor, SR and LR show maximum strain at different time points in the gait cycle, different ranges of strains, as well as a non-uniform strain field that exhibits both spatial and temporal variation. Hence, the Poisson's ratio is highly dependent on location and time. Follow on studies at lower length scales allowing for subcellular length scale strain measurement are underway to accurately account for the in situ mechanical environment of a given periosteal progenitor cell, e.g. in order to relate its functional loading environment to its biological (proliferation, migration, and differentiation) behavior. Discussion/Conclusion. These results underscore the imperative not only to carry out high resolution imaging measurements but also to elucidate the structure-function relationships at smaller length scales, as these are necessary to elucidate both the origins of emergent, advanced material properties of the periosteum as well as mechanically modulation of progenitor cell proliferation, migration and differentiation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 103 - 103
2 Jan 2024
Vadalá G
Full Access

The use of mesenchymal stem cell (MSCs) for intervertebral disc (IVD) regeneration has been extensively explored in the last two decades. MSCs are potent cell types that can be easily and safely harvested due to their abundancy and availability. Moreover, they are characterized by the capacity to differentiate towards IVD cells as well as release growth factors to support resident cell metabolism and recruit local progenitor cells to induce endogenous repair of degenerated IVDs. This talk will outline the characteristics of the main MSC sources and their effect towards IVD regeneration based on available preclinical and clinical evidence. In addition, innovative aspects of MSC-derived cell-free therapies will also be discussed


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 1 - 1
1 Jan 2003
Rust P Blunn G Cannon S Briggs T
Full Access

Osteoblast progenitor cells can be isolated from human bone marrow and on an appropriate carrier following differentiation into osteoblasts a bone block could be formed. This supply of autologous, osteoinductive bone graft substitute would have significant implications for clinical use. The aim of the study was to assess whether osteoblast progenitor cells isolated from human bone marrow, seeded onto porous hydroxyapatite (HA) blocks adhere, proliferate and differentiate into osteoblasts under the influence of HA alone. After informed consent, bone marrow was aspirated from the iliac crest of 8 patients. The osteoblast progenitor cells were separated from the haematological cells and cultured in vitro. Evidence for the osteoblast progenitor nature of the cells was obtained by adding osteogenic supplements: dexamethasone, ascorbic acid and b-glycophosphate, and comparing alkaline phosphatase (ALP) and osteocalcin expression with that of unstimulated cells. Undifferentiated osteoblast progenitor cells were seeded at a density of 2x10 . 6. cells/porous HA cylindrical block (8 x 8 x10 mm). The cell adhesion to the HA was observed, and proliferation and ALP expression was measured over 15 days. In monolayer culture the isolated bone marrow cells were morphologically identified as mesenchymal stem cells. When osteogenic supplements were added the phenotype became consistent with the morphology of osteoblastic cells, and the ALP expression was significantly higher (P< 0.05) after 5 days in culture compared with cells that had not been stimulated to differentiate. On the HA osteoblast progenitor cells were adherent and became more osteoblastic, being separated from the HA surface by an osteoid matrix layer on electron microscopy. The ALP expression by these cells increased significantly (P< 0.05) over the 15 day culture period. Bone marrow contains mesenchymal stem cells with osteogenic potential that are known as osteoblast progenitor cells. In this study we have shown that osteoblast progenitor cells can be isolated from human bone marrow and will adhere to and proliferate on HA blocks in vitro, and differentiate into osteoblasts spontaneously under the influence of the HA scaffold. These constructs could be used as osteoinductive bone grafts


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 6 - 6
2 Jan 2024
Liu W Feng M Xu P
Full Access

More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under high glucose condition in 2D culture. Interestingly, although the expression level of MMP13 was not changed by GW1100 at RNA and protein level, less MMP13 protein secreted out of cell nuclear. In summary, we estimated that higher glucose and lower lipid supplies benefit OA-CPC chondrogenesis and cartilage repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 36 - 36
2 Jan 2024
Jahr H
Full Access

Articular cartilage is a relatively hypoxic tissue with a unique extracellular matrix that is enriched with cations, resulting in an elevated interstitial fluid osmolarity. Several biomechanical and physicochemical stimuli are reported to influence chondrocyte metabolism. For regenerative in vitro applications, increasing the extracellular osmolarity above plasma level to more physiological valuesinduces chondrogenic marker expression and the differentiation of chondroprogenitor cells. Calcineurin inhibitor FK506 modulates the differentiation of primary chondrocytes under such conditions and its effect on cell proliferation, extracellular matrix quality, and BMP- and TGF-β signaling will be described. Supraphysiological osmolarity compromises chondrocyte proliferation, while physosmolarity or FK506 did not. Rather, the combination of the latter increased proteoglycan and collagen expression in chondrocytesin vitro and in situ, affecting expression of TGF-β-inducible protein TGFBI and chondrogenic (SOX9, Col2) as well as terminal differentiation markers (e.g., Col10). Surprisingly, expression of particularly minor collagens (e.g., Col9, Col11) was improved. Physiological osmolarity seems to promote terminal chondrogenic differentiation of progenitor cells through sensitization of TGF-β superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-β superfamily signaling, FK506 seems to enhance signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our data help explaining seemingly contradictory earlier findings and potentially benefit future cell-based cartilage repair strategies