Introduction: Recurrent Instability of the hip remains a difficult problem to treat successfully. The
This study reports the outcome of using the
Aims: To review the effectiveness of the
Recurrent posterior dislocation is a recognised complication following primary total hip arthroplasty. Incidences of between 0.11% and 4.5% have been reported in the literature. Component revision is regarded as standard management of recurrent posterior dislocation. However, revision surgery is a major surgical procedure and is often unsuitable for elderly, frail patients. A congruent, ultra-high molecular weight polyethylene acetabular augment with a stainless steel backing plate has been developed. This can be inserted providing there is no malalignment, wear or loosening of the primary components. In this study we compared twenty patients who underwent conventional revision surgery to twenty patients who had a PLAD inserted for recurrent posterior dislocation following primary Charnley total hip arthroplasty. Both groups were age and sex-matched and the average number of dislocations prior to surgery was three for each group. For the PLAD group, the mean operative time, the mean intraoperative blood loss, the time spent in HDU, the transfusion requirements and the duration of hospital stay was significantly less than that for the revision group. Furthermore, there was no significant difference in the Oxford Hip Score recorded preoperatively and at 6 weeks, 6 months, one year and two years following surgery. None of the patients had sustained a further dislocation at latest review. We conclude that the
Introduction: Reported incidence of dislocation following dislocation of hip replacements varies from less than 1% to 8%, the majority (59%) being in the first 3 months and 77% within a year. Recurrent dislocation of total hip arthroplasty is a serious problem for both patient and surgeon. Revision of the components does not guarantee success and there is significant comorbidity associated with major revision surgery. Early techniques of cup augmentation were complicated by screw and augment failure, hence cup augmentation evolved into a low profile polyethylene wedge with a separate metal backing and five screw fixation called the
Recurrent dislocation of the hip is a difficult management problem. We have chosen to tackle this in a minimal way and avoid complex revisions. All patients were late dislocators, and the majority were older than 75 years with 4 patients being octogenarians. A 7cm incision is made in the skin at the trochanter, the fascia is opened and the hip dislocated posteriorly the head of the hip is felt under the external rotators and they are opened in a minimal way. The cup is inspected for gross wear, no abnormality has been found. The PLAD is applied and fixed posteriorly after removal of minimal capsular and scar tissue, simple closure takes place with no drain. This procedure has been performed on nine occasions in our unit and all cases remain successful at a mean followup of 18 months (2–35 months). Operation times varied between 28 –42 minutes (mean 36 mins). Blood loss is minimal. The patient can be mobilised right away and early discharge can be achieved. This technique seems an ideal management solution in and elderly population with a good cup and stem with recurrent dislocation for unknown cause.
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
During surgical reduction of ankle injuries with syndesmotic instability surgeons often use the anteroposterior (AP) and mortise radiographs to assess reduction. Current literature predicts 50% are malreduced mainly in the sagittal plane. Our aim was to develop a radiographic measure based on the lateral view to assess both the normal and abnormal fibula/tibia relationship after simulated syndesmotic malreduction and to evaluate the effect on commonly used AP and mortise measurements. Nine fresh-frozen cadaveric specimens were dissected to the level of the syndesmosis. AP, mortise and talar dome lateral radiographs were obtained before and following syndesmosis division and posterior fibula displacement. On the lateral radiograph a line was drawn (Orthoview) from the anterior border of the fibula bisecting a line drawn from the anterior to
Tibial plateau fracture reduction involves restoration of alignment and articular congruity. Restorations of sagittal alignment (tibial slope) of medial and lateral condyles of the tibial plateau are independent of each other in the fracture setting. Limited independent assessment of medial and lateral tibial plateau sagittal alignment has been performed to date. Our objective was to characterize medial and lateral tibial slopes using fluoroscopy and to correlate X-ray and CT findings. Phase One: Eight cadaveric knees were mounted in extension. C-arm fluoroscopy was used to acquire an AP image and the C-arm was adjusted in the sagittal plane from 15° of cephalad tilt to 15 ° of caudad tilt with images captured at 0.5° increments. The “perfect AP” angle, defined as the angle that most accurately profiled the articular surface, was determined for medial and lateral condyles of each tibia by five surgeons. Given that it was agreed across surgeons that more than one angle provided an adequate profile of each compartment, a range of AP angles corresponding to adequate images was recorded. Phase Two: Perfect AP angles from Phase One were projected onto sagittal CT images in Horos software in the mid-medial compartment and mid-lateral compartment to determine the precise tangent subchondral anatomic structures seen on CT to serve as dominant bony landmarks in a protocol generated for calculating medial and lateral tibial slopes on CT. Phase Three: 46 additional cadaveric knees were imaged with CT. Tibial slopes were determined in all 54 specimens. Phase One: Based on the perfect AP angle on X-ray, the mean medial slope was 4.2°+/-2.6° posterior and mean lateral slope was 5.0°+/-3.8° posterior in eight knees. A range of AP angles was noted to adequately profile each compartment in all specimens and was noted to be wider in the lateral (3.9°+/-3.8°) than medial compartment (1.8°+/-0.7° p=0.002). Phase Two: In plateaus with a concave shape, the perfect AP angle on X-ray corresponded with a line between the superiormost edges of the anterior and
Introduction:. While kinematic abnormalities of contemporary TKA implants have been well established, a solution has not yet been achieved. We hypothesized that contemporary TKA implants are not compatible with normal soft-tissue function and normal knee motion. We propose a novel technique for reverse engineering advanced implant articular surfaces (biomimetic surface), by using accurate 3D kinematics of normal knees. This technique accounts for surgical placement of the implants, and allows design of tibial and femoral articular surfaces in conjunction. Methods:. Magnetic resonance imaging was used to create 3D knee models of 40 normal subjects (24 male, 16 female, age 29.9 ± 9.7 years), and bi-planar fluoroscopy was used to capture 3D knee motion during a deep knee bend. These data were combined to create a 3D virtual representation of an average normal knee and its motion pathway. A TKA femoral component was mounted on the average knee, and moved through its normal kinematic pathway to carve out an articular surface from a tibial template (Fig. 1 and 2). The geometry of the resulting biomimetic tibia was compared to that of the native tibia, and a contemporary TKA tibial insert that uses the same femoral component. Results:. The biomimetic tibia had a dished medial plateau and a convex lateral plateau similar to the native tibia, with anterior/
Introduction. Modern implant systems offer a variety of options to address the posterior cruciate ligament (PCL) and afford stability in primary total knee arthroplasty (TKA). One system has three bearing options for cruciate retaining (CR) TKA: standard CR bearing (CR-S) with 3° posterior slope and no
Glenoid exposure is the name of the game in total shoulder arthroplasty. I can honestly say that it took me more than 5 years but less than 10 to feel confident exposing any glenoid, regardless of the degree of bone deformity and the severity of soft-tissue contracture. This lecture represents the synthesis of my experience exposing some of the most difficult glenoids. The basic principles are performing extensive soft-tissue release, minimizing the anteroposterior dimension of the humerus by osteophyte excision, making an accurate humeral neck cut, having a plethora of glenoid retractors, and knowing where to place them. The ten tips, in reverse order of importance are: 10.) Tilt the table away from operative side—this helps face the surface of the glenoid, especially in cases of posterior wear, toward the surgeon. 9.) Have multiple glenoid retractors—these include a large Darrach, a reverse double-pronged Bankart, one or two blunt Homans, small and large Fukudas. 8.) Remove all humeral osteophytes before attempting to retract the humerus posteriorly to expose the glenoid—this helps to decrease the overall anteroposterior dimension of the humerus and allows for maximum posterior displacement of the humerus. 7.) Make an accurate humeral neck cut—even 5mm of extra humeral bone will make glenoid exposure difficult. 6.) Optimal humeral position—it has been taught that abduction, external rotation, and extension is the optimal position. It may vary with each case. Therefore, experiment with humeral rotation to find the position that allows maximum visualization. This is often the position that makes the cut surface of the humerus parallel to the surface of the glenoid. 5.) Optimal retractor placement—my typical retractor placement is a Fukuda on the
Background. To prevent excessive tension on the posterior cruciate ligament (PCL) in cruciate-retaining total knee arthroplasty (CR-TKA), some knee prosthesis-systems offer the option of creating a posterior slope for the tibial polyethylene insert. Vanguard® Complete Knee System offers two different types of tibial bearing for CR. -TKA. CR Lipped Bearing (LB) has a slightly raised
Glenoid exposure is the name of the game in total shoulder arthroplasty. I can honestly say that it took me more than 5 years but less than 10 to feel confident exposing any glenoid, regardless of the degree of bone deformity and the severity of soft-tissue contracture. This lecture represents the synthesis of my experience exposing some of the most difficult glenoids. The basic principles are performing extensive soft-tissue release, minimizing the anteroposterior dimension of the humerus by osteophyte excision, making an accurate humeral neck cut, having a plethora of glenoid retractors, and knowing where to place them. The ten tips, in reverse order of importance are: 10.) Tilt the table away from operative side—this helps face the surface of the glenoid, especially in cases of posterior wear, toward the surgeon. 9.) Have multiple glenoid retractors—these include a large Darrach, a reverse double-pronged Bankart, one or two blunt Homans, small and large Fukudas. 8.) Remove all humeral osteophytes before attempting to retract the humerus posteriorly to expose the glenoid—this helps to decrease the overall anteroposterior dimension of the humerus and allows for maximum posterior displacement of the humerus. 7.) Make an accurate humeral neck cut—even 5mm of extra humeral bone will make glenoid exposure difficult. 6.) Optimal humeral position—it has been taught that abduction, external rotation, and extension is the optimal position. It may vary with each case. Therefore, experiment with humeral rotation to find the position that allows maximum visualization. This is often the position that makes the cut surface of the humerus parallel to the surface of the glenoid. 5.) Optimal retractor placement—my typical retractor placement is a Fukuda on the
INTRODUCTION. Most total knees today are CR or PS, with lateral and medial condyles similar in shape. There is excellent durability, but a shortfall in functional outcomes compared with normals, evidenced by abnormal contact points and gait kinematics, and paradoxical sliding. However unicondylar, medial pivot, or bicruciate retaining, are preferred by patients, ascribed to AP stability or retention of anatomic structures (Pritchett; Zuiderbaan). Recently, Guided Motion knees have been shown to more closely reproduce anatomic kinematics (Walker; Willing; Amiri; Lin; Zumbrunn). As a design approach we proposed Design Criteria: reproduce the function of each anatomic stabilizing structure with bearing surfaces on the lateral and medial sides and intercondylar; resected cruciates because this is surgically preferred; avoid a cam-post because of central femur bone removal, soft tissue entrapment, noises, and damage (Pritchett; Nunley). Our hypothesis was that these criteria could produce a Guided Motion design with normal kinematics. METHODS & MATERIALS. Numerous studies on stability and laxity showed the ACL was essential to controlling posterior femoral displacement on the tibia whether the knee was loaded or unloaded. Under load, the anterior upwards slope of the medial tibial plateau prevented anterior displacement (Griffen; Freeman; Pinskerova; Reynolds). The posterior cruciate and the downward lateral tibial slope produced lateral rollback in flexion. The Replica Guided Motion knee had 3 bearings (Fig 1). The lateral side was shallow and sloped posteriorly, with a
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed and widely used. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femoro-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femoro-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system and tensor device intra-operatively in TKA. Materials and Methods. Sixty-one consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. During surgery, using a tensor device, after bony cut of femur and tibia, joint gaps were assessed in 0 and 90 degrees in flexion. Then, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal and sagittal relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) in the navigation system. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with a ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p< 0.05). Results. Joint gap assessment revealed significant enlargement in both of extension and 90 degrees in flexion after PCL resection compared with before resection. In kinematic analyses in navigation system, regarding to amount of sagittal movement of tibia, there were significances between before and after PCL resection in 60 and 90 degrees in flexion, 1.2mm difference in 60 degrees, and 2.3mm difference in 90 degrees in flexion. There were no significance between before and after PCL resection in the other degrees in flexion. Regarding to the other analyses, varus/ valgus and rotation, there were no differences between before and after resection of PCL. In addition, concerning ROM, maximum extension angle is significantly lower, and maximum flexion angle is significantly higher after than before PCL resection. Discussion. These results demonstrated that CS polyethylene insert might have a stability of femoro-tibial joint nearly after PCL resection as well as before PCL resection. The main design feature of Triathlon CS insert is single radius and rotary arc, in addition, the
Purpose. To establish the reliability of reporting and recording revision hip and knee arthroplasties by comparing data in the National Joint Registry (NJR), Hospital Episode Statistics (HES) and our local theatre records. Methods. The paper theatre registers for all orthopaedic theatres in the Royal Derby Hospitals NHS Trust were examined for details of revision hip and knee replacements carried out in 2007 and 2008. This was then cross-checked and merged with the local electronic theatre data to obtain a definitive local record of all revision hip and knee arthroplasties. Data for the same period was requested from the NJR and HES and these data were checked against our definitive local record for discrepancies. The HES codes used were the same codes used to compile the recent NJR annual reports. Results. The theatre registers and ORMIS identified 271 revision hip and knee arthroplasties in the study period. The NJR had corresponding data for 176 (65%) of these, and HES had 250 (92%). 10 cases (4%) were not recorded by either NJR or HES: 8 secondary resurfacings of patellae and 2
Tunning fork lines (TFL) were drawn on ankle anterior-posterior radiograph to assess the talar shift. A 3-D ankle joint reconstruction was prepared by mapping normal ankle joint using auto CAD in 1997. Tunning fork lines were drawn using normal anatomical landmarks on saggital, coronal and transverse planes. The ankle joint anatomical relationship with talus was studied in various rotation simulating radiographic anterior-posterior views and talar shift was studied. Between 2006 and 2012 on antero-posterior view of ankle radiographs and PACS, ‘Tunning Fork Lines’ (TFL) were drawn. The superior two vertical lines of the TFL were drawn above the ankle joint perpendicular to the distal tibial articular surface. First line tangent to anterior lip of the inferior tibio-fibular joint and second line tangent to the
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system intra-operatively in TKA. Materials and Methods. Twenty-four consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. In all patients, difference between extension and flexion gap was under 3mm after bony cut of femur and tibia. During surgery, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal (valgus/varus), sagittal (anterior/posterior) and rotational relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) (Figure1). During record of kinematics, the surgeon gently lifted the experimental thigh three times, flexing the hip and knee. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with paired t-test, and an ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p < 0.05). Results. In coronal (valgus/varus) movement, there are no difference between before and after resection of PCL in all ROM. Regarding to amount of sagittal movement of tibia, tibia was slightly shifted approximately 0.75mm posteriorly in 60 degrees of flexion (p=0.013). There are no significance between before and after PCL resection in the other ROM. In addition, concerning ROM, maximum extension angle is significantly lower, and maximum flexion angle is significantly higher after than before PCL resection. Discussion. These results demonstrated that CS polyethylene insert might have a stability of femoro-tibial joint nearly after PCL resection as well as before PCL resection. The main design feature of Triathlon CS insert is single radius and rotary arc, in addition, the
The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight