Introduction: Bone transport, or distraction osteogenesis, is a recognised technique to reconstruct extensive bony defects resulting from excision of bony tumours. Ilizarov demonstrated bone formation under tension allowing the movement of a free segment of living bone to fill intercalary defects. This study assesses the use of bone transport in the management of patients with resectable long bone tumours. Methods: We retrospectively reviewed patients who underwent bone transport in two institutions, performed by a single surgeon. A total of 14 patients were included in the study. There were 11 males and 3 females. Histological results demonstrated osteosarcoma (n=7), Ewing’s sarcoma (n=6), and
We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.Objectives
Materials and Methods