Introduction and Objective.
Introduction.
Introduction. Although osteonecrosis of the femoral head has been observed in young adult patients with autoimmune diseases such as SLE and MCTD that are treated by corticosteroids, the pathogenesis of the osteonecrosis remains unclear. We established a rat model with osteonecrosis of the femoral head by injecting lipopolysaccharide (LPS) and corticosteroid, and assessed consequences of the histopathological alteration of the femoral head, the systemic immune response, and the lipid synthesis. Methods. Male Wistar rats were given 2 mg/kg LPS intravenously on days 0 and 1 and intramuscularly 20 mg/kg methylprednisolone on days 2, 3, and 4. The animals were sacrificed 1, 2, 3, or 4 weeks after the last injection of the methylprednisolone. Histopathological and biochemical analyses were performed every week. The bone samples were then processed for routine hematoxylin and eosin staining to assess the general architecture and injury of the tissue. The triglyceride and the total cholesterol concentrations in the PRP were measured. The levels of various cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ, TNF-α) in blood samples were measured. Results. The body weight of the rats over time decreased for 2 weeks but had recovered by week 4. The plasma triglyceride concentrations had decreased significantly by weeks 2 and 3. The total plasma cholesterol concentrations had increased significantly by week 1 but then decreased significantly by week 4. The plasma concentrations of IL-1?α, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ and TNF-α had increased significantly by week 1. These cytokines can all be induced by toll-like receptor 4 (TLR4) signaling. We defined osteonecrosis as the diffuse presence of empty lacunae or pyknotic nuclei of osteocytes in the bone trabeculae, accompanied by surrounding bone marrow cell necrosis.
Introduction:
Introduction:
Introduction.
The pathophysiological basis of alterations in trabecular bone of patients with osteonecrosis of the femoral head (ONFH) remains unclear. ONFH has classically been considered a vascular disease with secondary changes in the subchondral bone. However, there is increasing evidence suggesting that ONFH could be a bone disease, since alterations in the functionality of bone tissue distant from the necrotic lesion have been observed. We comparatively studied the transcriptomic profile of trabecular bone obtained from the intertrochanteric region of patients with ONFH without an obvious aetiological factor, and patients with osteoarthritis (OA) undergoing total hip replacement in our Institution. To explore the biological processes that could be affected by ONFH, we compared the transcriptomic profile of trabecular bone from the intertrochanteric region and the femoral head of patients affected by this condition. Differential gene expression was studied using an Affymetrix microarray platform. Transcriptome analysis showed a differential signature in trabecular bone from the intertrochanteric region between patients with ONFH and those with OA. The gene ontology analyses of the genes overexpressed in bone tissue of patients with ONFH revealed a range of enriched biological processes related to cell adhesion and migration and angiogenesis. In contrast, most downregulated transcripts were involved in cell division. Trabecular bone in the intertrochanteric region and in the femoral head also exhibited a differential expression profile. Among the genes differentially expressed, we highlighted those related with cytokine production and immune response. This study identified a set of differently expressed genes in trabecular bone of patients with idiopathic ONFH, which might underlie the pathophysiology of this condition.
Introduction:
The most frequent diagnosis in young adults undergoing total hip arthroplasty (THA) is osteonecrosis of the femoral head (ONFH), an evolving and disabling condition with an increasing prevalence worldwide. Treatment of ONFH remains a challenge mainly because of a lack of understanding of the disease's pathophysiological basis. This study investigated the biological processes that could be affected by ONFH by comparing the microstructure, histological characteristics and transcriptomic profile of trabecular bone from the femoral head (FH) and the intertrochanteric region (IT) of patients suffering from this condition. A total of 18 patients with idiopathic ONFH undergoing THA in our institution were included. Trabecular bone explants were taken intraoperatively from the FH and the IT of patients. Bone microstructure was examined by micro-computed tomography (micro-CT). After bone sectioning, histological features were studied by hematoxylin and eosin staining. Differential gene expression was investigated using a microarray platform.Introduction
Method
The purpose of this study was to compare the clinical and radiological findings in patients with
Purpose: The purpose of this retrospective study was to assess clinical and radiological outcome at ten years follow-up at least in a continuous series of total hip arthroplasties performed in patients with
Introduction:
Total hip arthroplasty (THA) outcome in patients with osteonecrosis of the femoral head ONFH) are excellent, however, there is controversy when compared with those in patients with osteoarthritis (OA). Reduced mineralization capacity of osteoblasts of the proximal femur in patients with ONFH could affect implant fixation. We asked if THA fixation in patients with ONFH is worse than in those with OA. We carried out a prospective comparative case (OA)-control (ONFH) study of patients undergoing THA at our hospital between 2017 and 2019. The minimum follow-up was 2 years. Inclusion criteria were patients with uncemented THA, younger than 70 years old, a Dorr femoral type C and idiopathic ONFH. We compared the clinical (Merlé D'Aubigné-Postel score) and radiological results related with implant positioning and fixation. Engh criteria and subsidence were assessed at the immediate postoperative, 12 weeks, 6 months, 12 months and yearly. Osteoblastic activity was determined by mineralization assay on primary cultures of osteoblasts isolated from trabecular bone samples collected from the intertrochanteric area obtained during surgery. Group 1 (ONFH) included 18 patients and group 2 (OA), 22. Average age was 55.9 years old in group 1 and 61.3 in group 2. (p=0.08). There were no differences related with sex, Dorr femoral type or femoral filling. The mean clinical outcome score was 17.1 in group 1 and 16.5 in group 2 (p=0.03). There were no cases of dislocation, infection, or revision surgery in this series. There were 5 cases (28%) of femoral stem subsidence greater than 3mm within 6 first months in group 1 and 1 case (4.5%) in group 2 (p=0.05). Although there were no significant differences related to clinical results, bone fixation was slower, and a greater subsidence was observed in patients with ONFH. Greater femoral stem subsidence was associated with a lower capacity for mineral nodule formation in cultured osteoblasts. The surgical technique could influence THA outcome in patients with reduced mineralization capacity of osteoblasts.
Surgical treatment for osteonecrosis of the femoral head (ONFH) includes both joint-preserving techniques and joint replacement. Joint preservation is more effective in early-stage ONFH; thus, prompt diagnosis when the femoral head is still salvageable is an important clinical goal. We report a 20-year retrospective study that summarizes the proportion of patients diagnosed with early-stage versus late-stage ONFH at initial presentation to our practice. Our institutional database was reviewed to identify patients 18–65 years of age who were diagnosed with atraumatic ONFH in our clinic between 1998–2018. The Association Research Circulation Osseous (ARCO) system was used to stage ONFH, based on available imaging. Patients with prior surgical treatment for ONFH were excluded.Background
Methods
Bone marrow stem cells (BMSCs) represent a collection of different cell types exhibiting stem cell characteristics but with notable heterogeneity. Among these, Skeletal Stem Cells (SSCs) represent a distinct matrix subgroup within BMSC and demonstrate a specialized capacity to facilitate bone formation, recruit chondrocytes, and contribute to hematopoiesis. SSCs play a pivotal role in orchestrating the functions of skeletal organs. Local ischemia has a significant impact on cell survival and function. We hypothesize that bone ischemia induces alterations in the differentiation potential of SSCs, consequently influencing changes in bone structure. We mechanically dissected tissue from the necrotic segment in the femoral head and more normal appearing areas from the femoral neck of specimens from 5 patients diagnosed with osteonecrosis of the femoral head (ONFH). These tissues were enzymatically broken down into individual cell suspensions. Utilizing fluorescence-activated cell sorting (FACS) based on specific surface markers indicative of human skeletal stem cells (hSSC), namely CD45- CD235a- CD31- TIE2- Podoplanin (PDPN)+ CD146- CD73+ CD164+, we isolated a distinct cell population. Subsequent in vitro evaluations, focusing on clonogenicity, osteogenesis, and chondrogenesis were conducted to assess the functional prowess of these SSCs. Moreover, we introduced BMP2 at a concentration of 50ng/ml to SSCs extracted from necrotic regions to potentially reinstate their osteogenic capabilities. We effectively isolated SSCs from both Necrotic and Non-necrotic Zones. We observed an augmented clonal formation capacity and chondrogenesis ability of SSCs isolated from the necrotic region, accompanied by a significant decline in osteogenic ability ( Ischemia adversely affects the proliferation and function of SSCs, resulting in a diminished osteogenic capacity and an insensitivity to BMP2, ultimately leading to structural alterations in bone tissue.
A staging system has been developed to revise the 1994 ARCO classification for ONFH. The final consensus resulted in the following 4-staged system: stage I—X-ray is normal, but either magnetic resonance imaging or bone scan is positive; stage II—X-ray is abnormal (subtle signs of osteosclerosis, focal osteoporosis, or cystic change in the femoral head) but without any evidence of subchondral fracture, fracture in the necrotic portion, or flattening of the femoral head; stage III—fracture in the subchondral or necrotic zone as seen on X-ray or computed tomography scans. This stage is further divided into stage IIIA (early, femoral head depression ≤2 mm) and stage IIIB (late, femoral head depression >2 mm); and stage IV—X-ray evidence of osteoarthritis with accompanying joint space narrowing, acetabular changes, and/or joint destruction. Radiographs, magnetic resonance imaging (MRI), and computed tomography (CT) scans may all be involved in diagnosing ONFH; however, the optimal diagnostic modality remains unclear. The purpose of this study was to identify: 1) how ONFH is diagnosed at a single academic medical center, and 2) if CT is a necessary modality for diagnosing/staging OFNH. The EMR was queried for the diagnosis of ONFH between 1/1/2008–12/31/2018 at a single academic medical center. CT and MRI scans were reviewed by the senior author and other contributors. The timing and staging quality of the diagnosis of ONFH were compared between MRI and CT to determine if CT was a necessary component of the ONFH work-up.Introduction
Methods
Introduction: